The goal of this work is to understand adsorption-induced deformation of hierarchically structured porous silica exhibiting well-defined cylindrical mesopores. For this purpose, we performed an in situ dilatometry measurement on a calcined and sintered monolithic silica sample during the adsorption of N2 at 77 K. To analyze the experimental data, we extended the adsorption stress model to account for the anisotropy of cylindrical mesopores, i.e., we explicitly derived the adsorption stress tensor components in the axial and radial direction of the pore. For quantitative predictions of stresses and strains, we applied the theoretical framework of Derjaguin, Broekhoff, and de Boer for adsorption in mesopores and two mechanical models of silica rods with axially aligned pore channels: an idealized cylindrical tube model, which can be described analytically, and an ordered hexagonal array of cylindrical mesopores, whose mechanical response to adsorption stress was evaluated by 3D finite element calculations. The adsorption-induced strains predicted by both mechanical models are in good quantitative agreement making the cylindrical tube the preferable model for adsorption-induced strains due to its simple analytical nature. The theoretical results are compared with the in situ dilatometry data on a hierarchically structured silica monolith composed by a network of mesoporous struts of MCM-41 type morphology. Analyzing the experimental adsorption and strain data with the proposed theoretical framework, we find the adsorption-induced deformation of the monolithic sample being reasonably described by a superposition of axial and radial strains calculated on the mesopore level. The structural and mechanical parameters obtained from the model are in good agreement with expectations from independent measurements and literature, respectively.
Mechanical properties of hierarchically structured nanoporous materials are determined by the solid phase stiffness and the pore network morphology. We analyze the mechanical stiffness of hierarchically structured silica monoliths synthesized via a sol–gel process, which possess a macroporous scaffold built of interconnected struts with hexagonally ordered cylindrical mesopores. We consider samples with and without microporosity within the mesopore walls and analyze them on the macroscopic level as well as on the microscopic level of the mesopores. Untreated as-prepared samples still containing some organic components and the respective calcined and sintered counterparts of varying microporosity are investigated. To determine Young’s moduli on the level of the macroscopic monoliths, we apply ultrasonic run time measurements, while Young’s moduli of the mesopore walls are obtained by analysis of the in situ strain isotherms during N2 adsorption at 77 K. For the latter, we extended our previously reported theoretical approach for this type of materials by incorporating the micropore effects, which are clearly not negligible in the calcined and most of the sintered samples. The comparison of the macro- and microscopic Young’s moduli reveals that both properties follow essentially the same trends, that is, calcination and sintering increase the mechanical stiffness on both levels. Consequently, stiffening of the monolithic samples can be primarily attributed to stiffening of the backbone material which is consistent with the fact that the morphology on the mesopore level is mainly preserved with the post-treatments applied.
Adsorption-induced deformation of a series of silica samples with hierarchical porosity has been studied by in situ small-angle neutron scattering (SANS) and in situ dilatometry. Monolithic samples consisted of a disordered macroporous network of struts formed by a 2D lattice of hexagonally ordered cylindrical mesopores and disordered micropores within the mesopore walls. Strain isotherms were obtained at the mesopore level by analyzing the shift of the Bragg reflections from the ordered mesopore lattice in SANS data. Thus, SANS essentially measured the radial strain of the cylindrical mesopores including the volume changes of the mesopore walls due to micropore deformation. A H2O/D2O adsorbate with net zero coherent neutron scattering length density was employed in order to avoid apparent strain effects due to intensity changes during pore filling. In contrast to SANS, the strain isotherms obtained from in situ dilatometry result from a combination of axial and radial mesopore deformation together with micropore deformation. Strain data were quantitatively analyzed with a theoretical model for micro-/mesopore deformation by combining information from nitrogen and water adsorption isotherms to estimate the water–silica interaction. It was shown that in situ SANS provides complementary information to dilatometry and allows for a quantitative estimate of the elastic properties of the mesopore walls from water adsorption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.