Even though cancer treatment has improved over the recent decades, still more specific and effective treatment concepts are mandatory. Surgical removal is not always possible, metastases are challenging and chemo- and radiotherapy can not only have severe side-effects but also resistances may occur. To cope with these challenges more efficient therapies with fewer side-effects are required. One promising approach is the use of drug delivery vehicles. Here, mesoporous silica nanoparticles (MSN) are discussed as biodegradable drug carrier to improve efficacy and reduce side-effects. MSN excellently fulfill the criteria for nanoparticulate carriers: their distinct structure allows high loading capacity and a plethora of surface modifications. MSN synthesis permits fine-tuning of particle and pore sizes. Moreover, drug release can be tailored through various gatekeeper systems which are for example pH-sensitive or redox-sensitive. Furthermore, MSN can either enter tumors passively by the enhanced permeability and retention effect or can be actively targeted by various ligands. PEGylation prolongs circulation time and availability. A huge advantage of MSN is their explicitly low toxic profile in vivo. Yet, clinical translation remains challenging. Overall, mesoporous silica nanoparticles are a promising tool for innovative, more efficient and safer cancer therapies.
Metastatic invasion is the major cause of cancer-related deaths. In this study, we introduce two-pore channels (TPC), a recently described class of NAADP- and PI(3,5)P2-sensitive Ca-permeable cation channels in the endolysosomal system of cells, as candidate targets for the treatment of invasive cancers. Inhibition of the channel abrogated migration of metastatic cancer cells Silencing or pharmacologic inhibition of the two-pore channel TPC2 reduced lung metastasis of mammary mouse cancer cells. Disrupting TPC function halted trafficking of β1-integrin, leading to its accumulation in EEA1-positive early endosomes. As a consequence, invasive cancer cells were no longer able to form leading edges, which are required for adequate migration. Our findings link TPC to cancer cell migration and provide a preclinical proof of concept for their candidacy as targets to treat metastatic cancers..
Intraoperative definition of tumor free resection margins in head and neck cancer is challenging. In the current proof-of-principle study we evaluated a novel silica nanoparticle-based agent for its potential use as contrast enhancer. We synthesized silica nanoparticles with an average size of 45 nm and modified these particles with the fluorescence stain fluorescein isocyanate (FITC) for particle detection and with epidermal growth factor receptor (EGFR)-targeting antibodies for enhanced tumor specificity. The nanoparticles exhibited good biocompatibility and could be detected in vitro and in vivo by confocal laser scanning microscopy. Additionally, we show in an ex vivo setting that these modified nanoparticles specifically bind to tumor samples and could be detected using a handheld confocal fluorescence endomicroscope. From a clinical point of view, we believe that this method could be used for tumor border contrast enhancement and for better intraoperative definition of R-0 tumor resection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.