The effect of low temperature (LT, 10°C) on modification of plasma membrane (PM) H(+)-ATPase (EC 3.6.3.14) activity in cucumber roots was studied. Plants were grown under LT for 3 or 6 days. Some of the plants after 3 days exposure to LT were transferred to control conditions for another 3 days (post-cold, PC). The activity of PM-H(+)-ATPase was decreased in plants treated for 3 days with LT. However, the activity of PM-H(+)-ATPase was higher in plants treated with LT for a longer time and in PC plants as well. Estimation of transcript levels of cucumber PM-H(+)-ATPase in roots indicates that the action of LT involves the gene expression level. The level of PM-H(+)-ATPase mRNA was markedly decreased in roots exposed to LT for 3 days. Moreover, the increased H(+)-ATPase activity in PM isolated from plants treated for 6 days with LT and from PC plants was positively correlated with higher levels of CsHA transcripts. Western blot analysis with an anti-phosphothreonine antibody showed that modification of the activity of PM-H(+)-ATPase under LT stress did not result from phosphorylation/dephosphorylation of the enzyme protein. However, the stimulation of PM-H(+)-ATPase activity in the case of PC plants could partially have emanated from increased activity of PM NAD(P)H oxidoreductase. In addition, modification of the transcript level of proton pump genes could have resulted from the action of H(2)O(2). In PC plants, an increase in H(2)O(2) level was observed. Moreover, treatment of plants with H(2)O(2) induced expression of PM H(+)-ATPase genes.
Plasma membrane NADPH oxidases (RBOHs, EC 1.6.3.1) are known as the main ROS generators involved in plant adaptation to stress conditions. In the present work, regulation of NADPH oxidase was analyzed in cucumber (Cucumis sativus L. var. Krak) seedlings exposed to salinity. RBOH activity and gene expression, as well as H2O2 content, were determined in the roots of plants treated with 50 or 100 mM NaCl for 1 h, and 50 mM NaCl for 1 or 6 days. It was found that enzyme activity increased in parallel with an enhancement in the H2O2 level in roots exposed to 100 mM NaCl for 1 h, and to 50 mM NaCl for 1 day. The expression of some CsRboh genes was induced by salt. Moreover, an increase in the activity of G6PDH, providing the substrate for the NADPH oxidase, was observed. In seedlings subjected to salinity for a longer time, antioxidant enzymes—including superoxide dismutase, catalase, and ascorbate peroxidase—were activated, participating in maintaining a steady-state H2O2 content in the root cells. In conclusion, NADPH oxidase and endogenous H2O2 up-regulation seem to be early events in cucumber response to salinity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.