Selective area growth (SAG) of nanowires and networks promise a route toward scalable electronics, photonics, and quantum devices based on III-V semiconductor materials. The potential of high-mobility SAG nanowires however is not yet fully realised, since interfacial roughness, misfit dislocations at the nanowire/substrate interface and nonuniform composition due to material intermixing all scatter electrons. Here, we explore SAG of highly lattice-mismatched InAs nanowires on insulating GaAs(001) substrates and address these key challenges. Atomically smooth nanowire/substrate interfaces are achieved with the use of atomic hydrogen (a-H) as an alternative to conventional thermal annealing for the native oxide removal. The problem of high lattice mismatch is addressed through an In x Ga 1−x As buffer layer introduced between the InAs transport channel and the GaAs substrate. The Ga-In material intermixing observed in both the buffer layer and the channel is inhibited via careful tuning of the growth temperature. Performing scanning transmission electron microscopy and x-ray diffraction analysis along with low-temperature transport measurements we show that optimized In-rich buffer layers promote high-quality InAs transport channels with the field-effect electron mobility over 10 000 cm 2 V −1 s −1 . This is twice as high as for nonoptimized samples and among the highest reported for InAs selective area grown nanostructures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.