Groups of people or even robots often face problems they need to solve together. Examples include collectively searching for resources, choosing when and where to invest time and effort, and many more. Although a hierarchical ordering of the relevance of the group members' inputs during collective decision making is abundant, a quantitative demonstration of its origin and advantages using a generic approach has not been described yet. Here we introduce a family of models based on the most general features of group decision making, and show that the optimal distribution of competences is a highly skewed function with a structured fat tail. Our results are obtained by optimizing the groups' compositions through identifying the best-performing distributions for both the competences and for the members' flexibilities/pliancies. Potential applications include choosing the best composition for a group intended to solve a given task.
The emergence of opinion polarization within human communities—the phenomenon that individuals within a society tend to develop conflicting attitudes related to the greatest diversity of topics—has been a focus of interest for decades, both from theoretical and modelling points of view. Regarding modelling attempts, an entire scientific field—opinion dynamics—has emerged in order to study this and related phenomena. Within this framework, agents’ opinions are usually represented by a scalar value which undergoes modification due to interaction with other agents. Under certain conditions, these models are able to reproduce polarization—a state increasingly familiar to our everyday experience. In the present paper, an alternative explanation is suggested along with its corresponding model. More specifically, we demonstrate that by incorporating the following two well-known human characteristics into the representation of agents: (1) in the human brain beliefs are interconnected, and (2) people strive to maintain a coherent belief system; polarization immediately occurs under exposure to news and information. Furthermore, the model accounts for the proliferation of fake news, and shows how opinion polarization is related to various cognitive biases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.