5-methylcytosine (mC) is an epigenetic mark that impacts transcription, development, and genome stability, and aberrant DNA methylation contributes to aging and cancer. Active DNA demethylation involves stepwise oxidation of mC to 5-hydroxymethylcytosine, 5-formylcytosine (fC), and potentially 5-carboxylcytosine (caC), excision of fC or caC by thymine DNA glycosylase (TDG), and restoration of cytosine via follow-on base excision repair. Here, we investigate the mechanism for TDG excision of fC and caC. We find that 5-carboxyl-2′-deoxycytidine ionizes with pKa values of 4.28 (N3) and 2.45 (carboxyl), confirming that caC exists as a monoanion at physiological pH. Calculations do not support the proposal that G·fC and G·caC base pairs adopt a wobble structure that is recognized by TDG. Previous studies show that N-glycosidic bond hydrolysis follows a stepwise (SN1) mechanism, and that TDG activity increases with pyrimidine N1 acidity, i.e., leaving-group quality of the target base. Calculations here show that fC and the neutral tautomers of caC are acidic relative to other TDG substrates, but the caC monoanion exhibits poor acidity and likely resists TDG excision. While fC activity is independent of pH, caC excision is acid catalyzed, and the pH profile indicates that caC ionizes in the enzyme-substrate complex with an apparent pKa of 5.8, likely at N3. Mutational analysis reveals that Asn191 is essential for excision of caC but dispensable for fC activity, indicating that N191 may stabilize N3-protonated forms of caC to facilitate acid catalysis, and suggesting that N191A-TDG could potentially be useful for studying DNA demethylation in cells.
3-Methyladenine DNA glycosylase II (AlkA) is an enzyme that cleaves a wide range of damaged bases from DNA. The gas-phase thermochemical properties (tautomerism, acidity, and proton affinity) have been measured and calculated for a series of AlkA purine substrates (7-methyladenine, 7-methylguanine, 3-methyladenine, 3-methylguanine, purine, 6-chloropurine, xanthine) that have not been heretofore examined. The damaged nucleobases are found to be more acidic than the normal nucleobases adenine and guanine. Because of this increased acidity, the damaged bases would be expected to be more easily cleaved from DNA by AlkA (their conjugate bases should be better leaving groups). We find that the gas-phase acidity correlates to the AlkA excision rates, which lends support to an AlkA mechanism wherein the enzyme provides a nonspecific active site, and nucleobase cleavage is dependent on the intrinsic N-glycosidic bond stability.
The gas phase thermochemical properties (tautomeric energies, acidity, and proton affinity) have been measured and calculated for adenine and six adenine analogs that were designed to test features of the catalytic mechanism used by the adenine glycosylase MutY. The gas phase intrinsic properties are correlated to possible excision mechanisms and MutY excision rates to gain insight into the the MutY mechanism. The data support a mechanism involving protonation at N7 and hydrogen bonding to N3 of adenine. We also explored the acid-catalyzed (non-enzymatic) depurination of these substrates, which appears to follow a different mechanism than that employed by MutY, which we elucidate using calculations.
The fundamental properties of the parent and substituted 2-pyridones (2-pyridone, 3-chloro-2-pyridone, and 3-formyl-2-pyridone) have been examined in the gas phase using computational and experimental mass spectrometry methods. Newly measured acidities and proton affinities are reported and used to ascertain tautomer preference. These particular substrates (as well as additional 3-substituted pyridones) were chosen in order to examine the correlation between leaving group ability and acidity for moieties that allow resonance delocalization versus those that do not, which is discussed herein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.