In this literature review, the current state-of-art of coatings for orthodontic archwires’ increasing antimicrobial and relevant mechanical properties, such as surface topography, friction or corrosion resistance, has been presented. There is a growing request for orthodontic appliances, therefore, most researchers focus on innovative functional coatings to cover orthodontic archwires and brackets. Orthodontic appliances are exposed to the unfavorable oral cavity environment, consisting of saliva flow, food, temperature and appliance force. As a consequence, friction or biocorrosion processes may occur. This can affect the functionality of the orthodontic elements, causing changes in their microstructure, surface topography and mechanical properties. Furthermore, the material which the orthodontic archwire is made from is of particular importance in terms of the possible corrosion resistance. This is especially important for patients who are hypersensitive to metals, for example, nickel, which causes allergic reactions. In the literature, there are some studies, carried out in vitro and in vivo, mostly examining the antibacterial, antiadherent, mechanical and roughness properties of functional coatings. They are clinically acceptable but still some properties have to be studied and be developed for better results. In this paper the influence of additives such as nanoparticles of silver and nitrogen-doped TiO2 applied on orthodontic brackets by different methods on the antimicrobial properties was analyzed. Future improvement of coating techniques as well as modification of the archwire composition can reduce the release of nickel ions and eliminate friction and bacterial adhesion problems, thus accelerating treatment time.
The paper deals with the subject of diagnostics and the quick repairs of long-term operated metallic materials. Special attention was paid to historical materials, where the structure (e.g., puddle iron) is different from modern structural steels. In such materials, the processes of microstructural degradation occur as a result of several decades of exposure, which could overpass 100 years. In some cases, their intensity can be potentially catastrophic. For this reason, the search for minimally invasive diagnostic methods is ongoing. In this paper, corrosion and fracture toughness tests were conducted, and the results of these studies were presented for two material states: post-operated and normalized (as a state “restoring” virgin state). Moreover, through the use of modern numerical methods, composite crack-resistant patches have been designed to reduce the stress intensity factors under cyclic loads. As a result, fatigue lifetime was extended (propagation phase) by more than 300%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.