Some plant species can increase the mass flow of water from the soil to the root surface in response to the appearance of nitrate in the rhizosphere by increasing root hydraulic conductivity. Such behavior can be seen as a powerful strategy to facilitate the uptake of nitrate in the patchy and dynamically changing soil environment. Despite the significance of such behavior, little is known about the dynamics and mechanism of this phenomenon. Here we examine root hydraulic response of nitrate starved Zea mays (L.) plants after a sudden exposure to 5 mM NO(3)(-) solution. In all cases the treatment resulted in a significant increase in pressure-induced (pressure gradient approximately 0.2 MPa) flow across the root system by approximately 50% within 4 h. Changes in osmotic gradient across the root were approximately 0.016 MPa (or 8.5%) and thus the results could only be explained by a true change in root hydraulic conductance. Anoxia treatment significantly reduced the effect of nitrate on xylem root hydraulic conductivity indicating an important role for aquaporins in this process. Despite a 1 h delay in the hydraulic response to nitrate treatment, we did not detect any change in the expression of six ZmPIP1 and seven ZmPIP2 genes, strongly suggesting that NO(3)(-) ions regulate root hydraulics at the protein level. Treatments with sodium tungstate (nitrate reductase inhibitor) aimed at resolving the information pathway regulating root hydraulic properties resulted in unexpected findings. Although this treatment blocked nitrate reductase activity and eliminated the nitrate-induced hydraulic response, it also produced changes in gene expression and nitrate uptake levels, precluding us from suggesting that nitrate acts on root hydraulic properties via the products of nitrate reductase.
A mechanism whereby water flow towards root surfaces is stimulated when exposed to nutrient patches may be evolutionarily desirable in environments with heterogeneous soils. Indeed, the presence of nitrate has been shown to increase root hydraulic conductance in a few agricultural species characterized by high nitrate demand. Does a similar stimulation of root conductivity in response to external nitrate addition exist among wild type organisms? To answer this question, we studied and compared the effect of a sudden increase of nitrate concentration on root hydraulic properties in seven species. These included three agricultural species (Cucumis sativus L., Solanum esculentum L., Zea mays L.) and four wild type species (Arabidopsis thaliana L., Festuca arundinacea Schreb., Populus trichocarpa Torr.&Gray, Nephrolepis exaltata L.). The selected species differed in overall nitrate demand and specific nitrate uptake rates. Changes in root hydraulic conductance induced by nitrate varied from non-existent (N. exaltata L.) to more than 50% increases (Z. mays L.). The magnitude of the hydraulic response to nitrate presence was significantly correlated with species nitrate uptake rate. This finding suggests an emergent physiological trait that links together plant nitrate needs, nitrate availability and root hydraulic properties.
Plants are in danger of embolism formation in xylem vessels when the balance between water transport capacity and transpirational demand is compromised. To maintain this delicate balance, plants must regulate the rate of transpiration and, if necessary, restore water transport in embolized vessels. Abscisic acid (ABA) is the dominant long-distance signal responsible for plant response to stress, and it is possible that it plays a role in the embolism/refilling cycle. To test this idea, a temporal analysis of embolism and refilling dynamics, transpiration rate and starch content was performed on ABA-deficient mutant tomato plants. ABA-deficient mutants were more vulnerable to embolism formation than wild-type plants, and application of exogenous ABA had no effect on vulnerability. However, mutant plants treated with exogenous ABA had lower stomatal conductance and reduced starch content in the xylem parenchyma cells. The lower starch content could have an indirect effect on the plant’s refilling activity. The results confirm that plants with high starch content (moderately stressed mutant plants) were more likely to recover from loss of water transport capacity than plants with low starch content (mutant plants with application of exogenous ABA) or plants experiencing severe water stress. This study demonstrates that ABA most likely does not play any direct role in embolism refilling, but through the modulation of carbohydrate content, it could influence the plant’s capacity for refilling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.