Background: CCL-11 (eotaxin) is a chemokine with an important role in allergic conditions. Recent evidence indicates that CCL-11 plays a role in brain disorders as well. This paper reviews the associations between CCL-11 and aging, neurodegenerative, neuroinflammatory and neuropsychiatric disorders. Methods: Electronic databases were searched for original articles examining CCL-11 in neuropsychiatric disorders. Results: CCL-11 is rapidly transported from the blood to the brain through the blood-brain barrier. Age-related increases in CCL-11 are associated with cognitive impairments in executive functions and episodic and semantic memory, and therefore, this chemokine has been described as an “Endogenous Cognition Deteriorating Chemokine” (ECDC) or “Accelerated Brain-Aging Chemokine” (ABAC). In schizophrenia, increased CCL-11 is not only associated with impairments in cognitive functions, but also with key symptoms including formal thought disorders. Some patients with mood disorders and premenstrual syndrome show increased plasma CCL-11 levels. In diseases of old age, CCL-11 is associated with lowered neurogenesis and neurodegenerative processes, and as a consequence, increased CCL-11 increases risk towards Alzheimer’s disease. Polymorphisms in the CCL-11 gene are associated with stroke. Increased CCL-11 also plays a role in neuroinflammatory disease including multiple sclerosis. In animal models, neutralization of CCL-11 may protect against nigrostriatal neurodegeneration. Increased production of CCL-11 may be attenuated by glucocorticoids, minocycline, resveratrol and anti-CCL11 antibodies. Conclusions: Increased CCL-11 production during inflammatory conditions may play a role in human disease including age-related cognitive decline, schizophrenia, mood disorders and neurodegenerative disorders. Increased CCL-11 production is a new drug target in the treatment and prevention of those disorders.
Background.
Primary deficit schizophrenia (DS) is characterized by enduring negative symptoms and represents a qualitatively different disease entity with respect to non-deficit schizophrenia (NDS). No studies investigated the association between the enzyme paraoxonase 1 (PON1) and DS and its phenomenology.
Methods.
In this case-control study, Thai women and men, aged 18 to 65 years, were divided in DS (n = 40) and NDS (n = 40) and were compared to controls (n = 40). PON1 activities against 4-(chloromethyl)phenyl acetate (CMPA) and phenylacetate were determined. Moreover, subjects were genotyped for their PON1 Q192R polymorphism and immunoglobulin A (IgA) levels responses directed to Gram-negative bacteria were measured.
Results.
DS is significantly associated with the QQ genotype and the Q allele as compared with NDS and controls. PON1 activities are significantly and inversely associated with negative symptoms, formal thought disorders, psychomotor retardation, excitation and DS. The presence of the Q allele is associated with increased IgA responses to Pseudomonas aeruginosa, Morganella morganii, and Pseudomonas putida as compared with RR carriers.
Conclusions.
The PON1 Q allele and lower PON1 activities especially against CMPA are associated with DS, indicating lowered quorum quenching abilities as well as lowered defenses against lipoperoxidation and immune activation. It is suggested that lowered PON1 activity in DS constitutes an impairment in the innate immune system which together with lowered natural IgM may cause lower immune regulation thereby predisposing toward greater neurotoxic effects of immune-inflammatory, oxidative and nitrosative pathways and Gram-negative microbiota.
Background: Primary deficit schizophrenia (DS) is characterized by enduring negative symptoms and represents a qualitatively different disease entity with respect to non-deficit schizophrenia (NDS). No studies investigated the association between the enzyme paraoxonase 1 (PON1) and DS and its phenomenology. Methods: In this case-control study, Thai women and men, aged 18-65 years, were divided in DS (n=40) and NDS (n=40) and were compared to controls (n=40). PON1 activities against 4-(chloromethyl)phenyl acetate (CMPA) and phenylacetate were determined. Moreover, subjects were genotyped for their PON1 Q192R polymorphism and IgA levels responses directed to Gram-negative bacteria were measured. Results: DS is significantly associated with the QQ genotype and the Q allele as compared with NDS and controls. PON1 activities are significantly and inversely associated with negative symptoms, formal thought disorders, psychomotor retardation, excitation and DS. The presence of the Q allele is associated with increased IgA responses to Pseudomonas aeruginosa, Morganella morganii, and Pseudomonas putida as compared with RR carriers. Conclusions: The PON1 Q allele and lower PON1 activities especially against CMPA are associated with DS, indicating lowered quorum quenching abilities as well as lowered defenses against lipoperoxidation and immune activation. It is suggested that lowered PON1 activity in DS constitutes an impairment in the innate immune system which together with lowered natural IgM may cause lower immune regulation thereby predisposing towards greater neurotoxic effects of immune-inflammatory, oxidative and nitrosative pathways and Gram-negative microbiota.
Accumulating evidence suggests that TNF-α-mediated immune-neurotoxicity contributes to cognitive impairments and the overall severity of schizophrenia (OSOS). There are no data whether peripheral IL-6 and IL-4 may affect the phenome of schizophrenia above and beyond the effects of TNF-α and whether those cytokines are regulated by lowered natural IgM to malondialdehyde (MDA) and paraoxonase 1 enzyme activity. We assessed the aforementioned biomarkers in schizophrenia patients with (n=40) and without (n=40) deficit schizophrenia and 40 healthy controls. Deficit schizophrenia was best predicted by a combination of increased IL-6 and PON1 status (QQ genotype and lowered CMPAase activity) and lowered IgM to MDA. Partial Least Squares bootstrapping shows that 41.0% of the variance in negative symptoms, psychosis, hostility, excitation, mannerism, psychomotor retardation, and formal thought disorders was explained by increased TNF-α and PON1 status (QQ genotype and lowered CMPAase activity), lowered IL-4 and IgM to MDA as well as male sex and lowered education. We found that 47.9% of the variance in verbal fluency, word list memory, true recall, Mini-Mental State Examination, and executive functions was predicted by increased TNF-α and lowered IL-4, IgM to MDA and education. In addition, both TNF-α and IL-4 levels were significantly associated with lowered IgM to MDA, while TNF-α was correlated with PON1 status. These data provide evidence that the symptomatic (both the deficit subtype and OSOS) and cognitive impairments in schizophrenia are to a large extent mediated by the effects of immune-mediated neurotoxicity as well as lowered regulation by the innate immune system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.