Roadside collisions are a significant problem faced by all countries. Urbanisation has led to an increase in traffic congestion and roadside vehicle collisions. According to the UK Government’s Department for Transport, most vehicle collisions occur on urban roads, with empirical evidence showing drivers are more likely to break local and fixed speed limits in urban environments. Analysis conducted by the Department for Transport found that the UK’s accident prevention measure’s cost is estimated to be £33bn per year. Therefore, there is a strong motivation to investigate the causes of roadside collisions in urban environments to better prepare traffic management, support local council policies, and ultimately reduce collision rates. This study utilises agent-based modelling as a tool to plan, experiment and investigate the relationship between speeding and vehicle density with collisions. The study found that higher traffic density results in more vehicles travelling at a slower speed, regardless of the degree to which drivers comply with speed restrictions. Secondly, collisions increase linearly as speed compliance is reduced for all densities. Collisions are lowest when all vehicles comply with speed limits for all densities. Lastly, higher global traffic densities result in higher local traffic densities near-collision sites across all adherence levels, increasing the likelihood of congestion around these sites. This work, when extended to real-world applications using empirical data, can support effective road safety policies.
By 2020, over 100 countries had expanded electric and plug-in hybrid electric vehicle (EV/PHEV) technologies, with global sales surpassing 7 million units. Governments are adopting cleaner vehicle technologies due to the proven environmental and health implications of internal combustion engine vehicles (ICEVs), as evidenced by the recent COP26 meeting. This article proposes an agent-based model of vehicle activity as a tool for quantifying energy consumption by simulating a fleet of EV/PHEVs within an urban street network at various spatio-temporal resolutions. Driver behaviour plays a significant role in energy consumption; thus, simulating various levels of individual behaviour and enhancing heterogeneity should provide more accurate results of potential energy demand in cities. The study found that (1) energy consumption is lowest when speed limit adherence increases (low variance in behaviour) and is highest when acceleration/deceleration patterns vary (high variance in behaviour); (2) vehicles that travel for shorter distances while abiding by speed limit rules are more energy efficient compared to those that speed and travel for longer; and (3) on average, for tested vehicles, EV/PHEVs were £233.13 cheaper to run than ICEVs across all experiment conditions. The difference in the average fuel costs (electricity and petrol) shrinks at the vehicle level as driver behaviour is less varied (more homogeneous). This research should allow policymakers to quantify the demand for energy and subsequent fuel costs in cities.
This paper will critically assess the utility of conventional and novel data sources for building fine-scale spatio-temporal estimates of the ambient population. It begins with a review of data sources employed in existing studies of the ambient population, followed by preliminary analysis to further explore the utility of each dataset. The identification and critiquing of data sources which may be useful for building estimates of the ambient population are novel contributions to the literature. This paper will provide a framework of reference for researchers within urban analytics and other areas where an accurate measurement of the ambient population is required. This work has implications for national and international applications where accurate small area estimates of the ambient population are crucial in the planning and management of urban areas, the development of realistic models and informing policy. This research highlights workday population estimates, in conjunction with footfall camera and Wi-Fi sensors data as potentially valuable for building estimates of the ambient population.
Estimates of the resident population fail to account for human mobility, which significantly impacts the numbers of people in urban areas. Employing the ambient population provides a more nuanced approach to small-area population estimation. This paper utilises statistical modelling and novel data to estimate the size of the ambient population in an urban area. Models of the daytime and night-time ambient populations are produced for the city of Leeds, West Yorkshire, UK. Interestingly, the presence of cash machines and hospitality venues were found to be statistically significant and were identified as the most important predictors of the ambient population. In contrast to the literature, the number of retail hubs, transport hubs, and the density of mobile phone cell towers were not found to have statistically significant relationships with footfall camera counts. Footfall camera data and the results of the predictive model were validated through comparison with manually collected pedestrian counts. The results of this validation process demonstrated that at five out of the six locations in Leeds city centre, the model produced expected estimates of the size of the ambient population. The results suggest that the approach of this study can be used as a tool to inform decision-making within local government and studies in which small area estimates of ambient populations are required.
By 2020, over 100 countries expanded electric and plug-in hybrid electric vehicle (EV/PHEV) technologies, with global sales surpassing 7 million units. Governments are adopting cleaner vehicle technologies due to proven environmental and health implications of internal combustion engine vehicles (ICEVs), evidenced by the recent COP26 meeting. This article proposes an agent-based model of vehicle activity as a tool for quantifying energy consumption by simulating a fleet of EV/PHEVs within an urban street network at various spatio-temporal resolutions. Driver behaviour plays a significant role in fuel consumption, thus, simulating various levels of individual behaviour enhancing heterogeneity should provide more accurate results of potential energy demand in cities. The study found that 1) energy consumption is lowest when speed limit adherence increases (low variance in behaviour) and is highest when acceleration/deceleration patterns vary (high variance in behaviour) and 2) on average, for tested vehicles, EV/PHEVs were £116.33 cheaper to run than ICEVs across all experiment conditions. The difference in the average fuel costs (electricity and petrol) shrinks at the vehicle level as driver behaviour is less varied (more homogeneous). This research should allow policymakers to quantify the demand for energy and subsequent fuel costs in cities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.