Over the past fifty years, hundreds of polyyne compounds have been isolated from nature. These often unstable molecules are found in sources as common as garden vegetables and as obscure as bacterial cultures. Naturally occurring polyynes feature a wide range of structural diversity and display an equally broad array of biological properties. Early synthetic efforts relied primarily on Cu-catalyzed, oxidative acetylenic homo- and heterocoupling reactions to assemble the polyyne framework. The past 25 years, however, have witnessed a renaissance in the field of polyyne natural product synthesis: transition-metal-catalyzed alkynylation reactions and asymmetric transformations have combined to substantially expand access to natural polyynes. This Review recounts these synthetic achievements and also highlights both the natural source(s) and biological relevance for many of these compounds.
Unsymmetrically substituted 1,3-butadiynes and 1,3,5-hexatriynes are synthesized in four steps from commercially available aldehydes or carboxylic acids. The key step in this process involves a Fritsch-Buttenberg-Wiechell rearrangement, in which an alkylidene carbenoid intermediate subsequently rearranges to the desired polyyne. This rearrangement proceeds under mild conditions, and it is tolerant of a range of functionalities. In general, the procedurally facile formation of the dibromoolefinic precursors, in combination with the effectiveness of the rearrangement step, makes this procedure an attractive alternative to traditional methods for di- and triyne synthesis that utilize palladium or copper catalysis.
The mechanism of the Fritsch-Buttenberg-Wiechell rearrangement of (13)C labeled precursors has been examined to determine the propensity of the alkynyl (R-CC-) group to migrate in an alkylidene carbenoid species. Reaction of dibromoolefins with n-BuLi and ketones with Me(3)SiC(Li)N(2) both demonstrate that the alkynyl moiety readily undergoes 1,2-migration from carbenoid intermediates.
Naturally occurring mosquito larvicidal acetylenes 1 and 2, and analogues 3 and 4, each containing either a 1,3-butadiynyl or a 1,3,5-hexatriynyl moiety, are synthesized via a Fritsch-Buttenberg-Wiechell rearrangement. The alkylidene carbenoid intermediate results from lithium-halogen exchange of a suitable dibromoolefin precursor, and the rearrangement is accomplished under mild conditions. Synthesis of the dibromoolefin precursors to acetylenes 1-4 is easily achieved in three steps from commercially available carboxylic acids or aldehydes, making this procedure a viable alternative to conventional methods for the synthesis of naturally occurring acetylenes.
In den vergangenen fünfzig Jahren wurden Hunderte von Polyinen aus natürlichen Proben isoliert. Diese oftmals unbeständigen Verbindungen finden sich gleichsam in alltäglichen Quellen wie Gartengemüse und weniger geläufigen Quellen wie Bakterienkulturen. Die Strukturen von natürlichen Polyinen unterscheiden sich sehr stark, und entsprechend vielfältig sind die biologischen Eigenschaften dieser Naturstoffe. Frühe Syntheseansätze nutzten zum Aufbau des Polyin‐Gerüsts vorzugsweise die kupferkatalysierte oxidative Homo‐ und Heterokupplung von Alkinen. Eine Renaissance der Polyin‐Naturstoffsynthese hat in den vergangenen 25 Jahren jedoch innovative Synthesetechniken hervorgebracht: Übergangsmetallkatalysierte Alkinylierungen und asymmetrische Umwandlungen haben das Repertoire der Polyin‐Naturstoffsynthese merklich erweitert. Der Aufsatz stellt diese Verbesserungen vor und geht auf die natürliche(n) Quelle(n) und die biologische Bedeutung vieler Substanzen ein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.