Here we report ultrastable synthetic binding pairs between cucurbit[7]uril (CB[7]) and adamantyl- (AdA) or ferrocenyl-ammonium (FcA) as a supramolecular latching system for protein imaging, overcoming the limitations of protein-based binding pairs. Cyanine 3-conjugated CB[7] (Cy3-CB[7]) can visualize AdA- or FcA-labeled proteins to provide clear fluorescence images for accurate and precise analysis of proteins. Furthermore, controllability of the system is demonstrated by treating with a stronger competitor guest. At low temperature, this allows us to selectively detach Cy3-CB[7] from guest-labeled proteins on the cell surface, while leaving Cy3-CB[7] latched to the cytosolic proteins for spatially conditional visualization of target proteins. This work represents a non-protein-based bioimaging tool which has inherent advantages over the widely used protein-based techniques, thereby demonstrating the great potential of this synthetic system.
A supramolecular FRET pair based on the ultrahigh binding affinity between cyanine 3 conjugated cucurbit[7]uril (CB[7]-Cy3) and cyanine 5 conjugated adamantylamine (AdA-Cy5) was exploited as a new synthetic tool for imaging cellular processes in live cells. Confocal laser scanning microscopy revealed that CB[7]-Cy3 and AdA-Cy5 were intracellularly translocated and accumulated in lysosomes and mitochondria, respectively. CB[7]-Cy3 and AdA-Cy5 then formed a host-guest complex, reported by a FRET signal, as a result of the fusion of lysosomes and mitochondria. This observation not only indicated that CB[7] forms a stable complex with AdA in a live cell, but also suggested that this FRET pair can visualize dynamic organelle fusion processes, such as those involved in the degradation of mitochondria through autophagy (mitophagy), by virtue of its small size, chemical stability, and ease of use.
Serendipitously, mono-allyloxylated cucurbit[7]uril (AO CB[7]) was discovered to act as an unconventional amphiphile which self-assembles into light-responsive vesicles (AO CB[7]VC) in water. Although the mono-allyloxy group, directly tethered on the periphery of CB[7], is much shorter (C4) than the hydrophobic tails of conventional amphiphiles, it played an important role in vesicle formation. Light-activated transformation of the allyloxy group by conjugation with glutathione was exploited as a remote tool to disrupt the vesicle. The vesicle showed on-demand release of cargo upon irradiation by a laser, after they were internalized into cancer cells. This result demonstrated the potential of AO CB[7]VC as a new type of light-responsive intracellular delivery vehicle for the release of therapeutic cargo, within cells, on demand.
Chemical proteomics relies primarily on click-chemistry-based protein labeling and biotin-streptavidin enrichment, but these techniques have inherent limitations. Enrichment of intracellular proteins using a totally synthetic host-guest complex is described, overcoming the problem associated with the classical approach. We achieve this by affinity-based protein labeling with a target-specific probe molecule conjugated to a high-affinity guest (suberanilohydroxamic acid-ammonium-adamantane; SAHA-Ad) and then enriching the labeled species using a cucurbit[7]uril bead. This method shows high specificity for labeled molecules in a MDA-MB-231 breast cancer cell lysate. Moreover, this method shows promise for labeling proteins in live cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.