The field of conservation physiology strives to achieve conservation goals by revealing physiological mechanisms that drive population declines in the face of human-induced rapid environmental change (HIREC) and has informed many successful conservation actions. However, many studies still struggle to explicitly link individual physiological measures to impacts across the biological hierarchy (to population and ecosystem levels) and instead rely on a ‘black box’ of assumptions to scale up results for conservation implications. Here, we highlight some examples of studies that were successful in scaling beyond the individual level, including two case studies of well-researched species, and using other studies we highlight challenges and future opportunities to increase the impact of research by scaling up the biological hierarchy. We first examine studies that use individual physiological measures to scale up to population-level impacts and discuss several emerging fields that have made significant steps toward addressing the gap between individual-based and demographic studies, such as macrophysiology and landscape physiology. Next, we examine how future studies can scale from population or species-level to community- and ecosystem-level impacts and discuss avenues of research that can lead to conservation implications at the ecosystem level, such as abiotic gradients and interspecific interactions. In the process, we review methods that researchers can use to make links across the biological hierarchy, including crossing disciplinary boundaries, collaboration and data sharing, spatial modelling and incorporating multiple markers (e.g. physiological, behavioural or demographic) into their research. We recommend future studies incorporating tools that consider the diversity of ‘landscapes’ experienced by animals at higher levels of the biological hierarchy, will make more effective contributions to conservation and management decisions.
Demographic models are useful for projecting population trends, identifying life stages, most important to population dynamics, and investigating the demographic effects of potential management scenarios. We incorporated site-specific population parameters into stage-based matrix models to estimate population growth and to assess potential management scenarios for five intensively sampled (>15 years) populations of federally threatened bog turtles (Glyptemys muhlenbergii) in North Carolina, USA. Only two of the five populations modeled were stable or growing under estimated vital rates. Long-term sampling of bog turtle populations in NC suggests the declining populations in this study share several demographic characteristics with other populations in the region. Elasticity analysis revealed small changes in adult survival rates have the largest effect on population growth rate. These models also highlight that increased survival of egg and juvenile stages can sometimes buffer higher adult mortality and emigration, and reduced survival at multiple life stages can induce population-level decline. Our results indicate that management scenarios targeting increased recruitment (especially a head-start scenario) provide increased population growth among all populations, and allowed two of three declining populations to reach stability under current estimated vital rates. Population growth rates will be higher when population augmentation coincides with habitat restoration efforts that increase survival and site fidelity at all life stages. These models emphasize the importance of considering site-specific dynamics when evaluating conservation interventions for an imperiled long-lived species.
Variations in both the behavior of wildlife and the scale at which the environment most influences the space use of wild animals (i.e., scale of effect) are critical, but often overlooked in habitat selection modeling. Ecologists have proposed that biological responses happening over longer time frames are influenced by environmental variables at larger spatial scales, but this has rarely been empirically tested. Here, we hypothesized that long-term patterns of behavior (i.e. lasting multiple weeks to months) would be associated with larger scales of effect than more sporadic behaviors. We predicted site use by 43 radio-telemetered timber rattlesnakes (Crotalus horridus) exhibiting four distinct, time-varying behaviors (foraging, digestion, ecdysis, and gestation) using remotely-sensed environmental variables related to forest structure and landscape topography. Among sites used by snakes, warmer temperatures and higher levels of forest disturbance were predictive of behaviors dependent on thermoregulation including gestation and ecdysis while more moderate temperatures and drier, more oak-dominated sites were predictive of foraging. Long-term behaviors were associated with larger spatial scales, supporting our hypothesis that the scale at which habitat selection occurs is linked to the temporal scale of relevant behaviors. Management recommendations based on single-scale models of habitat use that do not account for fine-scale variations in behavior may obscure the importance of potentially limiting habitat features needed for infrequent behaviors that are critically important for growth and reproduction of this and related species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.