Abstract. Holdover fires are usually associated with lightning-ignited wildfires (LIWs), which can experience a smouldering phase or go undetected for several hours to days and weeks before being reported. Since the existence and duration of the smouldering combustion in LIWs is usually unknown, holdover time is conventionally defined as the time between the lightning event that ignited the fire and the time the fire is detected. Therefore, all LIWs have an associated holdover time, which may range from a few minutes to several days. However, we lack a comprehensive understanding of holdover times. Here, we introduce a global database on holdover times of LIWs. We have collected holdover time data from 29 different studies across the world through a literature review and datasets assembled by authors of the original studies. The database is composed of three data files (censored data, non-censored data, ancillary data) and three metadata files (description of database variables, list of references, reproducible examples). Censored data are the core of the database and consist of different frequency distributions reporting the number or relative frequency of LIWs per interval of holdover time. In addition, ancillary data provide further information to understand the methods and contexts in which the data were generated in the original studies. The first version of the database contains 42 frequency distributions of holdover time built with data on more than 152,375 LIWs from 13 countries in five continents covering a time span from 1921 to 2020. This database is the first freely available, harmonized, and ready-to-use global source of holdover time data, which may be used in different ways to investigate LIWs and model the holdover phenomenon. The complete database can be downloaded at https://doi.org/10.5281/zenodo.7352172 (Moris et al., 2022).
Abstract. Wildfires pose a significant risk to people and property, which is expected to grow with urban expansion into fire-prone landscapes and climate change causing increases in fire extent, severity and frequency. Identifying spatial patterns associated with wildfire activity is important for assessing the potential impacts of wildfires on human life, property and other values. Here, we model the probability of fire ignitions in vegetation across Victoria, Australia, to determine the key drivers of human- and lightning-caused wildfire ignitions. In particular, we extend previous research to consider the role that fuel moisture has in predicting ignition probability while accounting for environmental and local conditions previously identified as important. We used Random Forests to test the effect of variables measuring infrastructure, topography, climate, fuel and soil moisture, fire history, and local weather conditions to investigate what factors drove ignition probability for human- and lightning-caused ignitions. Human-caused ignitions were predominantly influenced by measures of infrastructure and local weather. Lightning-sourced ignitions were driven by fuel moisture, average annual rainfall and local weather. Both human- and lightning-caused ignitions were influenced by dead fuel moisture with ignitions more likely to occur when dead fuel moisture dropped below 20 %. In future, these models of ignition probability may be used to produce spatial likelihood maps, which will improve our models of future wildfire risk and enable land managers to better allocate resources to areas of increased fire risk during the fire season.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.