Extensive spectroscopic evaluation of a novel ONO3– trianionic pincer Fe(ii) complex indicates the rare square-planar geometry and S = 2 spin state are retained in solution.
The perovskite manganites AMnO3 and their doped analogues A1–xBxMnO3 (A and B = main group and lanthanide metals) are a fascinating family of magnetic oxides exhibiting a rich variety of properties. They are thus under intense investigation along multiple fronts, one of which is how their structural and physical properties are modified at the nanoscale. Here we show that the molecular compound [Ce3Mn8O8(O2CPh)18(HO2CPh)2] (CeIII
2CeIVMnIII
8; hereafter Ce3Mn8) bears a striking structural resemblance to the repeating unit seen in the perovskite manganites. Further, magnetic studies have established that Ce3Mn8 exhibits both the combination of pairwise MnIII
2 ferromagnetic and antiferromagnetic exchange interactions, and the resultant spin vector alignments that are found within the 3-D C-type antiferromagnetic perovskites. First-principles theoretical calculations reveal not only the expected nearest-neighbor MnIII
2 exchange couplings via superexchange pathways through bridging ligands but also an unusual, direct MnIII–CeIV–MnIII metal-to-metal channel involving the CeIV
f orbitals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.