Ligand-dependent downregulation of tyrosine kinase receptors is a critical step for modulating their activity. Upon ligand binding, hepatocyte growth factor (HGF) receptor (Met) is polyubiquitinated and degraded; however, the mechanisms underlying HGF receptor endocytosis are not yet known. Here we demonstrate that a complex involving endophilins, CIN85 and Cbl controls this process. Endophilins are regulatory components of clathrin-coated vesicle formation. Through their acyl-transferase activity they are thought to modify the membrane phospholipids and induce negative curvature and invagination of the plasma membrane during the early steps of endocytosis. Furthermore, by means of their Src-homology 3 domains, endophilins are able to bind CIN85, a recently identified protein that interacts with the Cbl proto-oncogene. Cbl, in turn, binds and ubiquitinates activated HGF receptor, and by recruiting the endophilin-CIN85 complex, it regulates receptor internalization. Inhibition of complex formation is sufficient to block HGF receptor internalization and to enhance HGF-induced signal transduction and biological responses. These data provide further evidence of a relationship between receptor-mediated signalling and endocytosis, and disclose a novel functional role for Cbl in HGF receptor signalling.
Targeting tyrosine kinase receptors (RTKs) with specific Abs is a promising therapeutic approach for cancer treatment, although the molecular mechanism(s) responsible for the Abs' biological activity are not completely known. We targeted the transmembrane RTK for hepatocyte growth factor (HGF) with a monoclonal Ab (DN30). In vitro, chronic treatment of carcinoma cell lines resulted in impairment of HGF-induced signal transduction, anchorage-independent growth, and invasiveness. In vivo, administration of DN30 inhibited growth and metastatic spread to the lung of neoplastic cells s.c. transplanted into immunodeficient nu͞nu mice. This Ab efficiently down-regulates HGF receptor through a molecular mechanism involving a double proteolytic cleavage: (i) cleavage of the extracellular portion, resulting in ''shedding'' of the ectodomain, and (ii) cleavage of the intracellular domain, which is rapidly degraded by the proteasome. Interestingly, the ''decoy effect'' generated by the shed ectodomain, acting as a dominant negative molecule, enhanced the inhibitory effect of the Ab.Ab ͉ metastasis ͉ tyrosine kinase ͉ receptor degradation ͉ proteolytic cleavage
MicroRNAs (miRNA) are a recently identified class of noncoding, endogenous, small RNAs that regulate gene expression, mainly at the translational level. These molecules play critical roles in several biological processes, such as cell proliferation and differentiation, development, and aging. It is also known that miRNAs play a role in human cancers where they can act either as oncogenes, down-regulating tumor suppressor genes, or as onco-suppressors, targeting molecules critically involved in promotion of tumor growth. One of such molecules is the tyrosine kinase receptor for hepatocyte growth factor, encoded by the MET oncogene. The MET receptor promotes a complex biological program named ''invasive growth'' that results from stimulation of cell motility, invasion, and protection from apoptosis. This oncogene is deregulated in many human tumors, where its most frequent alteration is overexpression. In this work, we have identified three miRNAs (miR-34b, miR-34c, and miR199a*) that negatively regulate MET expression. Inhibition of these endogenous miRNAs, by use of antagomiRs, resulted in increased expression of MET protein, whereas their exogenous expression in cancer cells blocked MET-induced signal transduction and the execution of the invasive growth program, both in cells expressing normal levels of MET and in cancer cells overexpressing a constitutively active MET. Moreover, we show that these same miRNAs play a role in regulating the MET-induced migratory ability of melanomaderived primary cells. In conclusion, we have identified miRNAs that behave as oncosuppressors by negatively targeting MET and might thus provide an additional option to inhibit this oncogene in tumors displaying its deregulation.
Targeted therapies by means of compounds that inhibit a specific target molecule represent a new perspective in the treatment of cancer. In contrast to conventional chemotherapy which acts on all dividing cells generating toxic effects and damage of normal tissues, targeted drugs allow to hit, in a more specific manner, subpopulations of cells directly involved in tumor progression. Molecules controlling cell proliferation and death, such as Tyrosine Kinase Receptors (RTKs) for growth factors, are among the best targets for this type of therapeutic approach. Two classes of compounds targeting RTKs are currently used in clinical practice: monoclonal antibodies and tyrosine kinase inhibitors. The era of targeted therapy began with the approval of Trastuzumab, a monoclonal antibody against HER2, for treatment of metastatic breast cancer, and Imatinib, a small tyrosine kinase inhibitor targeting BCR-Abl, in Chronic Myeloid Leukemia. Despite the initial enthusiasm for the efficacy of these treatments, clinicians had to face soon the problem of relapse, as almost invariably cancer patients developed drug resistance, often due to the activation of alternative RTKs pathways. In this view, the rationale at the basis of targeting drugs is radically shifting. In the past, the main effort was aimed at developing highly specific inhibitors acting on single RTKs. Now, there is a general agreement that molecules interfering simultaneously with multiple RTKs might be more effective than single target agents. With the recent approval by FDA of Sorafenib and Sunitinib--targeting VEGFR, PDGFR, FLT-3 and c-Kit--a different scenario has been emerging, where a new generation of anti-cancer drugs, able to inhibit more than one pathway, would probably play a major role.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.