BackgroundLinitis plastica due to gastric adenocarcinoma is a condition with a long history, but still lacks a standardized definition and is commonly confused with Borrmann type IV, Lauren diffuse, and signet-cell type gastric cancer. The absence of a clear definition is a problem when investigating its biological characteristics and role as a possible independent factor for prognosis. Nevertheless, the biological behavior for linitis plastica, which is unique, may be valuable in risk stratification and have implications for treatment. A definition of linitis plastica based on molecular or genomic criteria could represent a useful starting point for investigating new targeted therapies.Main bodyThis literature review of linitis plastica will focus on the current classifications for gastric cancer, illustrating how the concept of linitis plastica relates to them in most cases and identifying a clear and reproducible definition. Moreover, the review will highlight the diagnostic challenges associated with linitis plastica, its prognostic implications, and the therapeutic options available. Future perspectives for its management are also addressed.ConclusionLinitis plastica is a carcinoma with a scirrhous stroma, involving the submucosal and muscular layers of the stomach even in the absence of mucosal alteration. In most cases, the primary cancer cells are signet-ring cells or scattered cells in the context of a poorly differentiated carcinoma. Diagnosis is challenging. Staging should be thorough, including diagnostic laparoscopy in all cases due to the high incidence of peritoneal involvement. The prognostic significance of linitis plastica is still controversial. Curative-intent surgery, when feasible, should be performed, with a multimodality treatment approach. Cancer-stroma interactions are important features of this disease, and represent attaining potential target for future therapies. Future pathologic assessments of gastric cancer should report the stromal reaction in order to allow better characterization of the tumor.
Background Transanal total mesorectal excision (TaTME) was introduced in 2009 as a dedicated approach for the treatment of mid-low rectal cancer. We aimed to describe and discuss the learning curve for 121 consecutive TaTME procedures performed by the same team. Methods The primary outcome was the number of operations required to decrease the mean operative time (mOT). The secondary outcomes were the number of operations required to decrease the major complication (MC) rate, the anastomotic leakage (AL) rate, the clinical anastomotic failure rate, and the reoperation rate. A cumulative sum (CUSUM) curve analysis was used to identify the inflection points. As an integrative analysis, Bernoulli CUSUM curves, risk-adjusted CUSUM curves based on the observed-expected outcomes, and CUSUM curves targeting results reported in the literature were created. Results Seventy-one cases were needed to overcome the OT learning curve sufficiently to reach mastery. The MC and reoperation rates started to decrease after the 54th case and further decreased after the 69th case. The AL rate started to decrease after the 27th case and remained stable at 5–5.1%. The comparison between the different phases of the learning curves confirmed these turning points. Conclusions TaTME had a learning curve of 71 cases for the mOT, 55–69 cases for MCs and reoperation, and 27 cases for AL. According to our results, attention should be paid during the first part of the learning curve to avoid an increased rate of MCs and AL.
Background The gut microbiota (GM) has been proposed as one of the main determinants of colorectal surgery complications and theorized as the “missing factor” that could explain still poorly understood complications. Herein, we investigate this theory and report the current evidence on the role of the GM in colorectal surgery. Methods We first present the findings associating the role of the GM with the physiological response to surgery. Second, the change in GM composition during and after surgery and its association with colorectal surgery complications (ileus, adhesions, surgical-site infections, anastomotic leak, and diversion colitis) are reviewed. Finally, we present the findings linking GM science to the application of the enhanced recovery after surgery (ERAS) protocol, for the use of oral antibiotics with mechanical bowel preparation and for the administration of probiotics/synbiotics. Results According to preclinical and translational evidence, the GM is capable of influencing colorectal surgery outcomes. Clinical evidence supports the application of an ERAS protocol and the preoperative administration of multistrain probiotics/synbiotics. GM manipulation with oral antibiotics with mechanical bowel preparation still has uncertain benefits in right-sided colic resection but is very promising for left-sided colic resection. Conclusions The GM may be a determinant of colorectal surgery outcomes. There is an emerging need to implement translational research on the topic. Future clinical studies should clarify the composition of preoperative and postoperative GM and the impact of the GM on different colorectal surgery complications and should assess the validity of GM-targeted measures in effectively reducing complications for all colorectal surgery locations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.