In this paper the guiding properties of photonic crystal fibers with a square lattice of air-holes in a silica matrix have been studied for the first time. The dispersion curves of fibers with different hole-to-hole spacing and air-hole diameter have been accurately calculated. Negative values of the dispersion parameter and the dispersion slope have been obtained with a hole-to-hole spacing of 1 microm. A comparison between fibers with square and triangular lattice has been also performed, taking into account the dispersion properties and the effective area in the wavelength range between 1200 nm and 1600 nm.
A holey fiber (HF), having very complex hole geometry, is studied by means of a numerical simulator for modal analysis based on the finite-element method (FEM). Polarization and dispersion properties as well as the full vector field distribution of the fundamental mode are investigated. The obtained numerical results show a good agreement with experimental ones reported in literature
An analysis of the con.nement losses in photonic crystal fibers due to the finite numbers of air holes is performed by means of the finite element method. The high flexibility of the numerical method allows us to consider fibers with regular lattices, like the triangular and the honeycomb ones, and circular holes, but also fibers with more complicated cross sections like the cobweb fiber. Numerical results show that by increasing the number of air hole rings the attenuation constant decreases. This dependence is very strong for triangular and cobweb fibers, whereas it is very weak for the honeycomb one.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.