Neuromyelitis optica (NMO) is an inflammatory autoimmune demyelinating disease of the central nervous system (CNS) which in autoantibodies produced by patients with NMO (NMO-IgG) recognize a glial water channel protein, Aquaporin-4 (AQP4) expressed as two major isoforms, M1- and M23-AQP4, in which the plasma membrane form orthogonal arrays of particles (OAPs). AQP4-M23 is the OAP-forming isoform, whereas AQP4-M1 alone is unable to form OAPs. The function of AQP4 organization into OAPs in normal physiology is unknown; however, alteration in OAP assemblies is reported for several CNS pathological states. In this study, we demonstrate that in the CNS, NMO-IgG is able to pull down both M1- and M23-AQP4 but experiments performed using cells selectively transfected with M1- or M23-AQP4 and native tissues show NMO-IgG epitope to be intrinsic in AQP4 assemblies into OAPs. Other OAP-forming water-channel proteins, such as the lens Aquaporin-0 and the insect Aquaporin-cic, were not recognized by NMO-IgG, indicating an epitope characteristic of AQP4-OAPs. Finally, water transport measurements show that NMO-IgG treatment does not significantly affect AQP4 function. In conclusion, our results suggest for the first time that OAP assemblies are required for NMO-IgG to recognize AQP4.
The signaling diversity of GABAergic interneurons to post-synaptic neurons is crucial to generate the functional heterogeneity that characterizes brain circuits. Whether this diversity applies to other brain cells, such as the glial cells astrocytes, remains unexplored. Using optogenetics and two-photon functional imaging in the adult mouse neocortex, we here reveal that parvalbumin- and somatostatin-expressing interneurons, two key interneuron classes in the brain, differentially signal to astrocytes inducing weak and robust GABAB receptor-mediated Ca2+ elevations, respectively. Furthermore, the astrocyte response depresses upon parvalbumin interneuron repetitive stimulations and potentiates upon somatostatin interneuron repetitive stimulations, revealing a distinguished astrocyte plasticity. Remarkably, the potentiated response crucially depends on the neuropeptide somatostatin, released by somatostatin interneurons, which activates somatostatin receptors at astrocytic processes. Our study unveils, in the living brain, a hitherto unidentified signaling specificity between interneuron subtypes and astrocytes opening a new perspective into the role of astrocytes as non-neuronal components of inhibitory circuits.
The glial cells astrocytes have long been recognized as important neuron-supporting elements in brain development, homeostasis, and metabolism. After the discovery that the reciprocal communication between astrocytes and neurons is a fundamental mechanism in the modulation of neuronal synaptic communication, over the last two decades astrocytes became a hot topic in neuroscience research. Crucial to their functional interactions with neurons are the cytosolic Ca2+ elevations that mediate gliotransmission. Large attention has been posed to the so-called Ca2+microdomains, dynamic Ca2+ changes spatially restricted to fine astrocytic processes including perisynaptic astrocytic processes (PAPs). With presynaptic terminals and postsynaptic neuronal membranes, PAPs compose the tripartite synapse. The distinct spatial-temporal features and functional roles of astrocyte microdomain Ca2+ activity remain poorly defined. However, thanks to the development of genetically encoded Ca2+ indicators (GECIs), advanced microscopy techniques, and innovative analytical approaches, Ca2+ transients in astrocyte microdomains were recently studied in unprecedented detail. These events have been observed to occur much more frequently (∼50–100-fold) and dynamically than somatic Ca2+ elevations with mechanisms that likely involve both IP3-dependent and -independent pathways. Further progress aimed to clarify the complex, dynamic machinery responsible for astrocytic Ca2+ activity at microdomains is a crucial step in our understanding of the astrocyte role in brain function and may also reveal astrocytes as novel therapeutic targets for different brain diseases. Here, we review the most recent studies that improve our mechanistic understanding of the essential features of astrocyte Ca2+ microdomains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.