Based on the drift-reduced Braginskii equations, the Global Braginskii Solver, GBS, is able to model the scrape-off layer (SOL) plasma turbulence in terms of the interplay between the plasma outflow from the tokamak core, the turbulent transport, and the losses at the vessel. Model equations, the GBS numerical algorithm, and GBS simulation results are described. GBS has been first developed to model turbulence in basic plasma physics devices, such as linear and simple magnetized toroidal devices, which contain some of the main elements of SOL turbulence in a simplified setting. In this paper we summarize the findings obtained from the simulation carried out in these configurations and we report the first simulations of SOL turbulence. We also discuss the validation project that has been carried out together with the GBS development.
We describe a new version of GBS, a 3D global, flux-driven plasma turbulence code to simulate the turbulent dynamics in the tokamak scrape-off layer (SOL), superseding the code presented by [14]. The present work is driven by the objective of studying SOL turbulent dynamics in medium size tokamaks and beyond with a high-fidelity physics model. We emphasize an intertwining framework of improved physics models and the computational improvements that allow them. The model extensions include neutral atom physics, finite ion temperature, the addition of a closed field line region, and a non-Boussinesq treatment of the polarization drift. GBS has been completely refactored with the introduction of a 3-D Cartesian communicator and a scalable parallel multigrid solver. We report dramatically enhanced parallel scalability, with the possibility of treating electromagnetic fluctuations very efficiently. The method of manufactured solutions as a verification process has been carried out for this new code version, demonstrating the correct implementation of the physical model.
The non-linear turbulent regimes in the tokamak scrape-off layer (SOL) are identified according to the linear instability responsible for the perpendicular transport. Four regions of the SOL operational parameters are determined where turbulence is driven by the inertial or resistive branches of the ballooning mode or of drift waves. The analysis, based on the linear electrostatic drift-reduced Braginskii equations, evaluates the pressure scale length selfconsistently from the balance between plasma losses at the vessel and perpendicular turbulent transport. The latter is estimated by assuming that turbulence saturation occurs due to a local flattening of the plasma gradients and associated removal of the linear instability drive; it is also shown that transport is led by the mode that maximizes the ratio of the linear growth to the poloidal wavenumber. The methodology used to identify the turbulent regimes is confirmed by the results of non-linear simulations of SOL turbulence. The identification of the turbulent regimes, the predicted pressure scale length, and the poloidal wavenumber of the leading mode are in reasonable agreement with non-linear simulation results. [http://dx
A theory-based scaling for the characteristic length of a circular, limited tokamak scrape-off layer (SOL) is obtained by considering the balance between parallel losses and non-linearly saturated resistive ballooning mode turbulence driving anomalous perpendicular transport. The SOL size increases with plasma size, resistivity, and safety factor q. The scaling is verified against flux-driven non-linear turbulence simulations, which reveal good agreement within a wide range of dimensionless parameters, including parameters closely matching the TCV tokamak. An initial comparison of the theory against experimental data from several tokamaks also yields good agreement.
A drift-reduced Braginskii fluid model is used to carry out a linear and non-linear study of ideal ballooning modes in the tokamak scrape-off layer. First, it is shown that the scrape-off layer finite connection length and boundary conditions modify the ideal stability limit with respect to the closed flux-surface result. Then, in a two-fluid description, it is found that magnetic induction effects can destabilize long wavelength resistive ballooning modes below marginal ideal stability. Non-linear simulations confirm a gradual transition from small scale quasi-electrostatic interchange turbulence to longer wavelength modes as the plasma beta is increased. The transition to global ideal ballooning modes occurs, roughly, at the linearly obtained stability threshold. The transport levels and the pressure gradient as a function of plasma beta obtained in non-linear simulations can be predicted using the non-linear flattening of the pressure profile from the linear modes as a turbulent saturation mechanism. [http://dx
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.