Microalgal production has many advantages over the use of terrestrial plants; therefore, increases in the use of microalgae for energy production can be expected. Algal biomass can be processed anaerobically to methane; however, the unfavorable C/N ratio of the substrate may have an inhibitory effect. The impact of the application of used cooking oil, maize silage, and mill residue on anaerobic co-digestion of the microalgal Chlorella vulgaris was studied in semi-continuous, laboratory-scale digestion. During the full period of the trial involving anaerobic digestion of algae in the case of mono-digestion and co-digestion with used cooking oil, maize silage, and mill residue, the volumetric methane yields were 0.38 ± 0.07, 1.56 ± 0.26, 1.19 ± 0.18, and 1.16 ± 0.13 L L −1 , respectively. Trials were carried out to determine the long-term effect of the total solid (TS) content of substrates (co-digestion of C. vulgaris and used cooking oil at 3.8 and 7.2 % of TS, respectively). Both designs could be increased to 5.5 g VS L, but a higher TS% resulted in increased methane production and a longer period of decline in the methane yield due to washout. The sharp decrease in methane content at the end of 90 days was accompanied by a reorganization of the methanogenic archaeal community.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.