Caldendrin is a Ca2+ binding protein that interacts with multiple effectors, such as the Cav1 L-type Ca2+ channel, which play a prominent role in regulating the outgrowth of dendrites and axons (i.e., neurites) during development and in response to injury. Here, we investigated the role of caldendrin in Cav1-dependent pathways that impinge upon neurite growth in dorsal root ganglion neurons (DRGNs). By immunofluorescence, caldendrin was localized in medium- and large- diameter DRGNs. Compared to DRGNs cultured from WT mice, DRGNs of caldendrin knockout (KO) mice exhibited enhanced neurite regeneration and outgrowth. Strong depolarization, which normally represses neurite growth through activation of Cav1 channels, had no effect on neurite growth in DRGN cultures from female caldendrin KO mice. Remarkably, DRGNs from caldendrin KO males were no different from those of WT males in terms of depolarization-dependent neurite growth repression. We conclude that caldendrin opposes neurite regeneration and growth, and this involves coupling of Cav1 channels to growth-inhibitory pathways in DRGNs of females but not males.
Caldendrin is a calmodulin-like Ca2+ binding protein that is expressed primarily in neurons and regulates multiple effectors including Cav1 L-type Ca2+ channels. Here, we tested the hypothesis that caldendrin regulates Cav1-dependent pathways that repress neurite growth in dorsal root ganglion neurons (DRGNs). By immunofluorescence, caldendrin was localized in medium- and large- diameter DRGNs. Consistent with an inhibitory effect of caldendrin on neurite growth, neurite initiation and growth was enhanced in dissociated DRGNs from caldendrin knockout (KO) mice compared to those from wild type (WT) mice. In an in vitro axotomy assay, caldendrin KO DRGNs grew longer neurites via a mechanism that was more sensitive to inhibitors of transcription as compared to WT DRGNs. Strong depolarization, which normally represses neurite growth through activation of Cav1 channels, had no effect on neurite growth in DRGN cultures from female caldendrin KO mice. Remarkably, DRGNs from caldendrin KO males were no different from those of WT males in terms of depolarization-dependent neurite growth repression. We conclude that caldendrin opposes neurite regeneration and growth, and this involves coupling of Cav1 channels to growth-inhibitory pathways in DRGNs of females but not males. Our findings suggest that caldendrin KO mice represent an ideal model in which to interrogate the transcriptional pathways controlling neurite regeneration and how these pathways may differ in males and females.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.