Fly ash (FA), the major by-product of coal-fired thermal power plants, causes significant environmental degradation owing to its injurious heavy metal contents. Leaching of arsenic (As) from ash ponds is especially significant as As released from FA can increase As concentration of drinking water above maximum contaminant level of 10 ppb. The aim of this paper was demonstration of As bioremediation potential of indigenous As resistant bacteria present in the weathered pond ash sample. Ten isolates belonging to Bacillus, Micrococcus, Kytococcus and Staphylococcus genera were characterized. Biochemical tests showed reduction of relatively non toxic arsenate to more toxic arsenite by two strains while four strains showed oxidation of arsenite to arsenate. Two exoplolysaccharide producing strains were shown to absorb As within their biomass. Total heterotrophs versus As resistant heterotrophs counting performed showed that FA was enriched with As resistant heterotrophs. Column leaching based microcosm study revealed overall As detoxification potential of the isolated microbes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.