In recent years, erythromycin has received considerable attention for its therapeutic efficacy against some bacterial kidney diseases in aquaculture and, therefore, suitable and sensitive analytical methods to monitor erythromycin residues in fish are required. A fast sample treatment followed by an LC-ESI-MS/MS method is described for the purification, identification, and quantification of erythromycin A residues in fish. After two extractions with acetonitrile, samples were defatted with n-hexane, filtered, and analyzed by tandem mass spectrometry. Three characteristic transition reactions (m/z 734 --> 716, 734 --> 576, and 734 --> 558) in multiple reaction monitoring were tested for the determination and confirmation of erythromycin A. The method was in-house validated through the determination of precision, accuracy, specificity, stability, calibration curve, decision limit (CCalpha), and detection capability (CCbeta), in accordance with European Commission Decision 657/2002. The coefficients of variation ranged from 1.8 to 9.4% and from 7.5 to 10.9% for intra- and interday repeatability, respectively. Recovery data were also satisfactory, with values varying from 85 to 97%. The method was specific, stable, and robust enough for the required purposes. The calibration curve showed a good linearity in the whole range of the tested concentrations (0-1000 microg kg(-1)) with a correlation coefficient (r2) equal to 0.9956. CCalpha and CCbeta were found to be 220 and 238 microg kg(-1), respectively.
Aquaculture production has notably increased in the last decades, mainly thanks to intensive farming. Together with market globalization, this gives rise to the spreading of several fish diseases, thus increasing the demand for veterinary drugs for aquatic species. Nonetheless, very few chemicals are registered for use in aquaculture, and fish farmers are often forced to resort to off-label use of drugs authorized for other food-producing animal species. Rainbow trout is the major farmed fish species in Italy and the second one in Europe. Erythromycin is the antibiotic of choice against gram-positive cocci, the major concern for trout farming, but it is not yet registered for aquaculture use in most European countries. The aim of this study was to follow the depletion of erythromycin in rainbow trout (Oncorhynchus mykiss), after its administration at 100 mg kg ؊1 trout body weight day ؊1 for 21 days through medicated feed (water temperature, 11.5°C). Erythromycin residues in fish muscle plus skin in natural proportion were determined by a validated liquid chromatography-electrospray ionization-tandem mass spectrometry method. Interpolation of our data, following European Agency for the Evaluation of Medicinal Products guidelines, gives a withdrawal time of 255°C-days (°C-day ؍ water temperature ؋ days), thus showing that the general value (500°C-day) recommended by the Council Directive (EEC) no. 82/2001 for off-label drug use in aquaculture would be too conservative in this case, with excessive costs for the farmers. Our study provides preliminary data for a more prudent use of erythromycin in rainbow trout, suggesting a possible withdrawal time after treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.