Many marine bacteria produce exopolysaccharides (EPS) as a strategy for growth, adhering to solid surfaces, and to survive adverse conditions. There is growing interest in isolating new EPS producing bacteria from marine environments, particularly from extreme marine environments such as deep-sea hydrothermal vents characterized by high pressure and temperature and heavy metal presence. Marine EPS-producing microorganisms have been also isolated from several extreme niches such as the cold marine environments typically of Arctic and Antarctic sea ice, characterized by low temperature and low nutrient concentration, and the hypersaline marine environment found in a wide variety of aquatic and terrestrial ecosystems such as salt lakes and salterns. Most of their EPSs are heteropolysaccharides containing three or four different monosaccharides arranged in groups of 10 or less to form the repeating units. These polymers are often linear with an average molecular weight ranging from 1 × 105 to 3 × 105 Da. Some EPS are neutral macromolecules, but the majority of them are polyanionic for the presence of uronic acids or ketal-linked pyruvate or inorganic residues such as phosphate or sulfate. EPSs, forming a layer surrounding the cell, provide an effective protection against high or low temperature and salinity, or against possible predators. By examining their structure and chemical-physical characteristics it is possible to gain insight into their commercial application, and they are employed in several industries. Indeed EPSs produced by microorganisms from extreme habitats show biotechnological promise ranging from pharmaceutical industries, for their immunomodulatory and antiviral effects, bone regeneration and cicatrizing capacity, to food-processing industries for their peculiar gelling and thickening properties. Moreover, some EPSs are employed as biosurfactants and in detoxification mechanisms of petrochemical oil-polluted areas. The aim of this paper is to give an overview of current knowledge on EPSs produced by marine bacteria including symbiotic marine EPS-producing bacteria isolated from some marine annelid worms that live in extreme niches.
Extreme environments, generally characterized by atypical temperatures, pH, pressure, salinity, toxicity, and radiation levels, are inhabited by various microorganisms specifically adapted to these particular conditions, called extremophiles. Among these, the microorganisms belonging to the Archaea domain are of significant biotechnological importance as their biopolymers possess unique properties that offer insights into their biology and evolution. Particular attention has been devoted to two main types of biopolymers produced by such peculiar microorganisms, that is, the extracellular polysaccharides (EPSs), considered as a protection against desiccation and predation, and the endocellular polyhydroxyalkanoates (PHAs) that provide an internal reserve of carbon and energy. Here, we report the composition, biosynthesis, and production of EPSs and PHAs by different archaeal species.
Levan is a homopolymer of fructose with many outstanding properties like high solubility in oil and water, strong adhesiveness, good biocompatibility, and film-forming ability. However, its industrial use has long been hampered by costly production processes which rely on mesophilic bacteria and plants. Recently, Halomonas sp. AAD6 halophilic bacteria were found to be the only extremophilic species producing levan at high titers in semi-chemical medium containing sucrose, and in this study, pretreated sugar beet molasses and starch molasses were both found to be feasible substitutes for sucrose. Five different pretreatment methods and their combinations were applied to both molasses types. Biomass and levan concentrations reached by the Halomonas sp. AAD6 cells cultivated on 30 g/L of pretreated beet molasses were 6.09 g dry cells/L and 12.4 g/L, respectively. When compared with literature, Halomonas sp. was found to stand out with its exceptionally high levan production yields on available fructose. Molecular characterization and monosaccharide composition studies confirmed levan-type fructan structure of the biopolymers. Rheological properties under different conditions pointed to the typical characteristics of low viscosity and pseudoplastic behaviors of the levan polymers. Moreover, levan polymer produced from molasses showed high biocompatibility and affinity with both cancerous and non-cancerous cell lines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.