Sphingolipids are polar membrane lipids present as minor components in eukaryotic cell membranes. Sphingolipids are highly enriched in nervous cells, where they exert important biological functions. They deeply affect the structural and geometrical properties and the lateral order of cellular membranes, modulate the function of several membrane-associated proteins, and give rise to important intra- and extracellular lipid mediators. Sphingolipid metabolism is regulated along the differentiation and development of the nervous system, and the expression of a peculiar spatially and temporarily regulated sphingolipid pattern is essential for the maintenance of the functional integrity of the nervous system: sphingolipids in the nervous system participate to several signaling pathways controlling neuronal survival, migration, and differentiation, responsiveness to trophic factors, synaptic stability and synaptic transmission, and neuron-glia interactions, including the formation and stability of central and peripheral myelin. In several neurodegenerative diseases, sphingolipid metabolism is deeply deregulated, leading to the expression of abnormal sphingolipid patterns and altered membrane organization that participate to several events related to the pathogenesis of these diseases. The most impressive consequence of this deregulation is represented by anomalous sphingolipid-protein interactions that are at least, in part, responsible for the misfolding events that cause the fibrillogenic and amyloidogenic processing of disease-specific protein isoforms, such as amyloid beta peptide in Alzheimer's disease, huntingtin in Huntington's disease, alpha-synuclein in Parkinson's disease, and prions in transmissible encephalopathies. Targeting sphingolipid metabolism represents today an underexploited but realistic opportunity to design novel therapeutic strategies for the intervention in these diseases.
TDP-43, encoded by TARDBP, is a ubiquitously expressed, primarily nuclear protein. In recent years, TDP-43 has been identified as the major pathological protein in ALS due to its mislocalisation in the cytoplasm of motor neurons of patients with and without TARDBP mutations and expression in forms that do not match its predicted molecular weight. In this study, the TDP-43 profile was investigated using western immunoblot analysis in whole lysates, nuclei and cytoplasm of circulating lymphomonocytes from 16 ALS patients, 4 with (ALS/TDP+) and 12 without (ALS/TDP-) TARDBP mutations in the protein C-terminal domain, and thirteen age-matched, healthy donors (controls). Three disease-unaffected first-degree relatives of an ALS/TDP+ patient were also included: one carried the parent mutation (Rel/TDP+) whereas the other two did not (Rel/TDP-). In all ALS patients, relatives and controls, TDP-43 retained the predicted molecular weight in whole cell lysates and nuclei, but in the cytoplasm its molecular weight was slightly smaller than expected. In quantitative terms, TDP-43 was expressed at approximately the same levels in whole cell lysates of ALS patients, relatives and controls. In contrast, TDP-43 accumulated in the cytoplasm with concomitant nuclear depletion in all ALS/TDP+ patients, in about 50% of ALS/TDP- patients and in the Rel/TDP+ subject compared to the controls. In the remaining ALS/TDP- patients and in the two Rel/TDP- subjects, TDP-43 matched the control levels in both subcellular compartments. Were these findings further confirmed, circulating lymphomonocytes could be informative of TDP-43 mislocalisation in nervous tissue and used as a biomarker for future disease risk.
Accumulation of transactive response DNA binding protein (TDP-43) fragments in motor neurons is a post mortem hallmark of different neurodegenerative diseases. TDP-43 fragments are the products of the apoptotic caspases-3 and -7. Either excessive or insufficient cellular Ca(2+) availability is associated with activation of apoptotic caspases. However, as far as we know, it is not described whether activation of caspases, due to restricted intracellular Ca(2+), affects TDP-43 cleavage. Here we show that in various cell lineages with restricted Ca(2+) availability, TDP-43 is initially cleaved by caspases-3 and -7 and then, also by caspases-6 and -8 once activated by caspase-3. Furthermore, we disclose the existence of a TDP-43 caspase-mediated fragment of 15kDa, in addition to the well-known fragments of 35 and 25kDa. Interestingly, with respect to the other two fragments this novel fragment is the major product of caspase activity on murine TDP-43 whereas in human cell lines the opposite occurs. This outcome should be considered when murine models are used to investigate TDP-43 proteinopathies.
In ALS forms characterized by TDP-43 mislocalization in motor neurons, monocytes display this alteration, even when not manifest in CLM. Monocytes may be used to support diagnosis, as well as to identify subjects at risk, of ALS and to develop/monitor targeted treatments.
The aetiology of Amyotrophic Lateral Sclerosis (ALS) is still poorly understood. The discovery of genetic forms of ALS pointed out the mechanisms underlying this pathology, but also showed how complex these mechanisms are. Excitotoxicity is strongly suspected to play a role in ALS pathogenesis. Excitotoxicity is defined as neuron damage due to excessive intake of calcium ions (Ca2+) by the cell. This study aims to find a relationship between the proteins coded by the most relevant genes associated with ALS and intracellular Ca2+ accumulation. In detail, the profile of eight proteins (TDP-43, C9orf72, p62/sequestosome-1, matrin-3, VCP, FUS, SOD1 and profilin-1), was analysed in three different cell types induced to raise their cytoplasmic amount of Ca2+. Intracellular Ca2+ accumulation causes a decrease in the levels of TDP-43, C9orf72, matrin3, VCP, FUS, SOD1 and profilin-1 and an increase in those of p62/sequestosome-1. These events are associated with the proteolytic action of two proteases, calpains and caspases, as well as with the activation of autophagy. Interestingly, Ca2+ appears to both favour and hinder autophagy. Understanding how and why calpain-mediated proteolysis and autophagy, which are physiological processes, become pathological may elucidate the mechanisms responsible for ALS and help discover new therapeutic targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.