Post-translational modifications of chromatin structure by histone acetyltransferase (HATs) play a central role in the regulation of gene expression and various biological processes in eukaryotes. Although HAT genes have been studied in many fungi, few of them have been functionally characterized. In this study, we identified and characterized four putative HATs (FgGCN5, FgRTT109, FgSAS2, FgSAS3) in the plant pathogenic ascomycete Fusarium graminearum, the causal agent of Fusarium head blight of wheat and barley. We replaced the genes and all mutant strains showed reduced growth of F. graminearum. The ΔFgSAS3 and ΔFgGCN5 mutant increased sensitivity to oxidative and osmotic stresses. Additionally, ΔFgSAS3 showed reduced conidia sporulation and perithecium formation. Mutant ΔFgGCN5 was unable to generate any conidia and lost its ability to form perithecia. Our data showed also that FgSAS3 and FgGCN5 are pathogenicity factors required for infecting wheat heads as well as tomato fruits. Importantly, almost no Deoxynivalenol (DON) was produced either in ΔFgSAS3 or ΔFgGCN5 mutants, which was consistent with a significant downregulation of TRI genes expression. Furthermore, we discovered for the first time that FgSAS3 is indispensable for the acetylation of histone site H3K4, while FgGCN5 is essential for the acetylation of H3K9, H3K18, and H3K27. H3K14 can be completely acetylated when FgSAS3 and FgGCN5 were both present. The RNA-seq analyses of the two mutant strains provide insight into their functions in development and metabolism. Results from this study clarify the functional divergence of HATs in F. graminearum, and may provide novel targeted strategies to control secondary metabolite expression and infections of F. graminearum.
The occurrence resistance to methyl benzimidazole carbamates (MBC)-fungicides in the Fusarium graminearum species complex (FGSC) is becoming a serious problem in the control of Fusarium head blight in China. The resistance is caused by point mutations in the β2-tubulingene. So far, five resistant genotypes (F167Y, E198Q, E198L, E198K and F200Y) have been reported in the field. To establish a high-throughput method for rapid detection of all the five mutations simultaneously, an efficient single-nucleotide-polymorphism-based genotyping method was developed based on the Luminex xMAP system. One pair of amplification primers and five allele specific primer extension probes were designed and optimized to specially distinguish the different genotypes within one single reaction. This method has good extensibility and can be combined with previous reported probes to form a highly integrated tool for species, trichothecene chemotype and MBC resistance detection. Using this method, carbendazim resistant FGSC isolates from Jiangsu, Anhui and Sichuan Province in China were identified. High and moderate frequencies of resistance were observed in Jiangsu and Anhui Province, respectively. Carbendazim resistance in F. asiaticum is only observed in the 3ADON genotype. Overall, our method proved to be useful for early detection of MBC resistance in the field and the result aids in the choice of fungicide type.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.