Summary The objective of this study was to assess the effect of proline, mineral salts (NaCl and Na2SO4) and pH combined with moisture content on the glass transition temperature (Tg) and flow‐starting temperature (Tf) of soy protein concentrate (SPC). Initial screening of the variables based on fractional factorial design showed insignificant effect of NaCl on Tg and Tf. The design was extended to a face‐centred central composite design (CCD) excluding NaCl and data evaluated by use of response surface methodology. The established model for Tg (R2 = 0.824) shows significant negative first‐order effects of moisture, proline and Na2SO4, and a positive interaction effect of moisture and Na2SO4. The Tf model (R2 = 0.937) shows significant negative first‐order effects of moisture and proline, a positive first‐order and negative square effect of pH, and a negative interaction effect of moisture and proline. The main effect on Tg and Tf was 2.2 and 1.3 times higher, respectively, for moisture compared to proline. The study confirms that proline (or other free amino acids) can replace moisture as protein plasticiser in the extrusion process. Minor effects can also be obtained by reduction in pH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.