This study examines important developmental differences in patterns of activation in the prefrontal cortex during performance of a Go-No-Go paradigm using functional magnetic resonance imaging (fMRI). Eighteen subjects (9 children and 9 adults) were scanned using gradient echo, echo planar imaging during performance of a response inhibition task. The results suggest four general findings. First, the location of activation in the prefrontal cortex was not different between children and adults, which is similar to our earlier pediatric fMRI results of prefrontal activation during a working memory task (Casey et al., 1995). Second, the volume of activation was significantly greater for children relative to adults. These differences in volume of activation were observed predominantly in the dorsal and lateral prefrontal cortices. Third, although inhibitory processes have typically been associated with more ventral or orbital frontal regions, the current study revealed activation that was distributed across both dorsolateral and orbitofrontal cortices. Finally, consistent with animal and human lesion studies, activity in orbital frontal and anterior cingulate cortices correlated with behavioral performance (i.e., number of false alarms). These results further demonstrate the utility of this methodology in studying pediatric populations.
Objective: To examine the relation between specific frontostriatal structures (prefrontal cortex and basal ganglia) and response inhibition deficits observed in attention-deficitlhyperactivity disorder (ADHD). Method: Children with ADHD and age-matched normal controls were scanned using magnetic resonance imaging (MRI) and tested on three response inhibition tasks. Behavioral performance was correlated with MRI-based anatomical measures of frontostriatal circuitry (prefrontal cortex and basal ganglia) implicated in ADHD. Results: First, significant differences in performance by children with ADHD and normal volunteers were observed on all three response inhibition tasks. Second, performance on these tasks correlated only with those anatomical measures of frontostriatal circuitry observed to be abnormal in children with ADHD (e.g., the region of the prefrontal cortex, caudate, and globus pallidus, but not the putamen) in the authors' previous study. Third, significant correlations between task performance and anatomical measures of the prefrontal cortex and caudate nuclei were predominantly in the right hemisphere, supporting a role of right frontostriatal circuitry in response inhibition and ADHD. Conclusion: The data suggest a role of the right prefrontal cortex in suppressing responses to salient, but otherwise irrelevant events while the basal ganglia appear to be involved in executing these behavioral responses.
In what is to our knowledge the largest series of stone analysis reported to date we identified an age and gender relationship of stone formation and composition. Regional variations are common and underline the influence of living habits, diet and standard of medical care on urinary stone formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.