Controversy has long surrounded the question of nutritional differences between crops grown organically or using now-conventional methods, with studies dating back to the 1940s showing that farming methods can affect the nutrient density of crops. More recent studies have shown how reliance on tillage and synthetic nitrogen fertilizers influence soil life, and thereby soil health, in ways that can reduce mineral micronutrient uptake by and phytochemical production in crops. While organic farming tends to enhance soil health and conventional practices degrade it, relying on tillage for weed control on both organic and conventional farms degrades soil organic matter and can disrupt soil life in ways that reduce crop mineral uptake and phytochemical production. Conversely, microbial inoculants and compost and mulch that build soil organic matter can increase crop micronutrient and phytochemical content on both conventional and organic farms. Hence, agronomic effects on nutritional profiles do not fall out simply along the conventional vs. organic distinction, making the effects of farming practices on soil health a better lens for assessing their influence on nutrient density. A review of previous studies and meta-studies finds little evidence for significant differences in crop macronutrient levels between organic and conventional farming practices, as well as substantial evidence for the influence of different cultivars and farming practices on micronutrient concentrations. More consistent differences between organic and conventional crops include that conventional crops contain greater pesticide levels, whereas organically grown crops contain higher levels of phytochemicals shown to exhibit health-protective antioxidant and anti-inflammatory properties. Thus, part of the long-running controversy over nutritional differences between organic and conventional crops appears to arise from different definitions of what constitutes a nutrient—the conventional definition of dietary constituents necessary for growth and survival, or a broader one that also encompasses compounds beneficial for maintenance of health and prevention of chronic disease. For assessing the effects of farming practices on nutrient density soil health adds a much needed dimension—the provisioning of micronutrients and phytochemicals that support human health.
Several independent comparisons indicate regenerative farming practices enhance the nutritional profiles of crops and livestock. Measurements from paired farms across the United States indicate differences in soil health and crop nutrient density between fields worked with conventional (synthetically-fertilized and herbicide-treated) or regenerative practices for 5 to 10 years. Specifically, regenerative farms that combined no-till, cover crops, and diverse rotations—a system known as Conservation Agriculture—produced crops with higher soil organic matter levels, soil health scores, and levels of certain vitamins, minerals, and phytochemicals. In addition, crops from two regenerative no-till vegetable farms, one in California and the other in Connecticut, had higher levels of phytochemicals than values reported previously from New York supermarkets. Moreover, a comparison of wheat from adjacent regenerative and conventional no-till fields in northern Oregon found a higher density of mineral micronutrients in the regenerative crop. Finally, a comparison of the unsaturated fatty acid profile of beef and pork raised on one of the regenerative farms to a regional health-promoting brand and conventional meat from local supermarkets, found higher levels of omega-3 fats and a more health-beneficial ratio of omega-6 to omega-3 fats. Despite small sample sizes, all three crop comparisons show differences in micronutrient and phytochemical concentrations that suggest soil health is an under appreciated influence on nutrient density, particularly for phytochemicals not conventionally considered nutrients but nonetheless relevant to chronic disease prevention. Likewise, regenerative grazing practices produced meat with a better fatty acid profile than conventional and regional health-promoting brands. Together these comparisons offer preliminary support for the conclusion that regenerative soil-building farming practices can enhance the nutritional profile of conventionally grown plant and animal foods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.