This paper presents formulation of computationally efficient models of photoionization produced by non-thermal gas discharges in air based on three-group Eddington and improved Eddington (SP 3 ) approximations to the radiative transfer equation, and on effective representation of the classic integral model for photoionization in air developed by Zheleznyak et al (1982) by a set of three Helmholtz differential equations. The reported formulations represent extensions of ideas advanced recently by Ségur et al (2006) and Luque et al (2007), and allow fast and accurate solution of photoionization problems at different air pressures for the range 0.1 < p O 2 R < 150 Torr cm, where p O 2 is the partial pressure of molecular oxygen in air in units of Torr (p O 2 = 150 Torr at atmospheric pressure) and R in cm is an effective geometrical size of the physical system of interest. The presented formulations can be extended to other gases and gas mixtures subject to availability of related emission, absorption and photoionization coefficients. The validity of the developed models is demonstrated by performing direct comparisons of the results from these models and results obtained from the classic integral model. Specific validation comparisons are presented for a set of artificial sources of photoionizing radiation with different Gaussian dimensions, and for a realistic problem involving development of a double-headed streamer at ground pressure. The reported results demonstrate the importance of accurate definition of the boundary conditions for the photoionization production rate for the solution of second order partial differential equations involved in the Eddington, SP 3 and the Helmholtz formulations. The specific algorithms derived from the classic photoionization model of Zheleznyak et al (1982), allowing accurate calculations of boundary conditions for differential equations involved in all three new models described in this paper, are presented. It is noted that the accurate formulation of boundary conditions represents an important task needed for a successful extension of the proposed formulations to two-and three-dimensional physical systems with obstacles of complex geometry (i.e. electrodes, dust particles, aerosols, etc), which are opaque for the photoionizing UV photons.
Results of an experimental study of the efficiency of the ignition of propane-air mixtures by a high voltage repetitively pulsed nanosecond gas discharge (10 kV, 10 ns, 30 kHz) are presented for the pressure range 0.35-2.0 bar. The measured minimal energy for ignition is found to decrease with the pressure. A significant reduction of the ignition delay and a decrease of the overall combustion duration were obtained by using a train of high-voltage pulses. Spectroscopic measurements in a 1-bar air just after a 10-pulse train (300 µs) of about 10 mJ in total energy show the presence of N, N + , O, and O + atomic species and a gas temperature increase up to 3000 K.Index Terms-Nanosecond plasma, plasma-assisted ignition, propane-air mixture inflammation, repetitively pulsed nanosecond discharge.
This paper presents a combined 2D numerical and experimental study of the influence of N 2 admixture on the dynamics of a He-N 2 discharge in the 10 cm long dielectric tube of a plasma gun set-up. First, the comparison between experiments and simulations is carried out on the ionization front propagation velocity in the tube. The importance of taking into account a detailed kinetic scheme for the He-N 2 mixture in the simulations to obtain a good agreement with the experiments is put forward. For the μs driven plasma gun, the two-and three-body Penning reactions occurring in the plasma column behind the ionization front, are shown to play a key role on the discharge dynamics. In the experiments and simulations, the significant influence of the amplitude of the applied voltage on the ionization front propagation velocity is observed. As the amount of N 2 varies, simulation results show that the ionization front velocity, depends on a complex coupling between the kinetics of the discharge, the photoionization and the 2D structure of the discharge in the tube. Finally, the time evolution of axial and radial components of the electric field measured by an electro-optic probe set outside the tube are compared with simulation results. A good agreement is obtained on both components of the electric field. In the tube, simulations show that the magnitude of the axial electric field on the discharge axis depends weakly on the amount of N 2 conversely to the magnitude of the off-axis peak electric field. Both, simulations and first measurements in the tube or within the plasma plume show peak electric fields of the order of 45 kV•cm −1 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.