Eelgrass (Zostera marina) is a marine foundation species essential for coastal ecosystem services around the northern hemisphere. Like all macroscopic organisms, it possesses a microbiome (here defined as an associated prokaryotic community) which may play critical roles in modulating the interaction of eelgrass with its environment. For example, its leaf surface microbiome could inhibit or attract eukaryotic epibionts which may overgrow the eelgrass leading to reduced primary productivity and subsequent eelgrass meadow decline. We used amplicon sequencing of the 16S and 18S rRNA genes of prokaryotes and eukaryotes to assess the leaf surface microbiome (prokaryotes) as well as eukaryotic epibionts in- and outside lagoons on the German Baltic Sea coast. Prokaryote microbiomes varied substantially both between sites inside lagoons and between open coastal and lagoon sites. Water depth, leaf area and biofilm chlorophyll a concentration explained a large amount of variation in both prokaryotic and eukaryotic community composition. The prokaryotic microbiome and eukaryotic epibiont communities were highly correlated, and network analysis revealed disproportionate co-occurrence between a limited number of eukaryotic taxa and several bacterial taxa. This suggests that eelgrass leaf surfaces are home to a mosaic of microbiomes of several epibiotic eukaryotes, in addition to the microbiome of the eelgrass itself. Our findings thereby underline that eukaryotic diversity should be taken into account in order to explain prokaryotic microbiome assembly and dynamics in aquatic environments.
Our ability to attend and respond in a multi-target environment is an essential and distinct human skill, as is dramatically demonstrated in stroke patients suffering from extinction. We performed a functional magnetic resonance imaging study to determine the neural anatomy associated with attending and responding to simultaneously presented targets. In healthy subjects, we tested the hypothesis that the right intraparietal sulcus (IPS) is associated both with the top-down direction of attention to multiple target locations and the bottom-up detection of multiple targets, whereas the temporo-parietal junction (TPJ) is predominantly associated with the bottom-up detection of multiple targets. We used a cued target detection task with a high proportion of catch trials to separately estimate top-down cue-related and bottom-up target-related neural activity. Both cues and targets could be presented unilaterally or bilaterally. We found no evidence of target-related neural activation specific to bilateral situations in the TPJ, but observed both cue-related and target-related neural activation specific to bilateral situations in the right IPS and target-related neural activity specific to bilateral situations in the right inferior frontal gyrus (IFG). We conclude that the IPS and the IFG of the right hemisphere underlie our ability to attend and respond in a multi-target environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.