Parallels between T cell kinetics in mice and men have fueled the idea that a young mouse is a good model system for a young human, and an old mouse, for an elderly human. By combining in vivo kinetic labeling using deuterated water, thymectomy experiments, analysis of T cell receptor excision circles and CD31 expression, and mathematical modeling, we have quantified the contribution of thymus output and peripheral naive T cell division to the maintenance of T cells in mice and men. Aging affected naive T cell maintenance fundamentally differently in mice and men. Whereas the naive T cell pool in mice was almost exclusively sustained by thymus output throughout their lifetime, the maintenance of the adult human naive T cell pool occurred almost exclusively through peripheral T cell division. These findings put constraints on the extrapolation of insights into T cell dynamics from mouse to man and vice versa.
In mice, recent thymic emigrants (RTEs) make up a large part of the naïve T cell pool and have been suggested to be a distinct short-lived pool. In humans, however, the life span and number of RTEs are unknown. Although 2 H2O labeling in young mice showed high thymic-dependent daily naïve T cell production, long term upand down-labeling with 2 H2O in human adults revealed a low daily production of naïve T cells. Using mathematical modeling, we estimated human naïve CD4 and CD8 T cell half-lives of 4.2 and 6.5 years, respectively, whereas memory CD4 and CD8 T cells had half-lives of 0.4 and 0.7 year. The estimated half-life of recently produced naïve T cells was much longer than these average half-lives. Thus, our data are incompatible with a substantial short-lived RTE population in human adults and suggest that the few naïve T cells that are newly produced are preferentially incorporated in the peripheral pool. recent thymic emigrants ͉ T cell half-lives ͉ T cell production T he role of the thymus in HIV infection is still poorly understood (1, 2). On the one hand, thymic failure has been suggested to play a crucial role in CD4 T cell loss during HIV infection (3), and rapid thymic rebound has been proposed to be responsible for T cell reconstitution during anti-viral treatment (4). However, it has been argued that thymic output in adults might be too low to have a large impact on CD4 T cell depletion (5). In general, these issues are addressed with estimates of thymic output, naïve and memory T cell production rates, and life spans that are simply extrapolated from observations in mice, monkeys, and lymphopenic or irradiated humans (6-11).Naïve T cells are generally thought to turnover relatively slowly, but it has been suggested that, in mice, a considerable part of the naïve T cell pool consists of RTEs with relatively rapid turnover (9, 10, 12). In humans, naïve T cell numbers, T cell receptor excision circles (TRECs), and expression of CD31 have been used to measure thymic output (7,13,14). Dion et al. (4) observed rapid changes in the Sj/V TREC ratio within 3 months after infection with HIV, which suggested the presence of a rapidly turning over RTE pool in human adults containing most of the TRECs in the periphery, similar to young rodents and chickens (15, 16). However, because TRECs are long-lived, none of these approaches is specific for T cells that have recently emigrated from the thymus (1, 2, 5), and, therefore, they fail to quantify thymic output in humans.Peripheral T cell proliferation might also contribute to the maintenance of the naïve T cell pool in human adults; however, it is unclear which fraction of these cells remains in the naïve T cell pool (17). The contribution of RTEs and peripheral T cell proliferation to the maintenance of the naïve T cell pool can only be determined by studying the fate of newly produced T cells. In vivo labeling with stable isotopes in combination with appropriate mathematical analysis of these data provides a way to obtain T cell decay and production rates ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.