The ability of human-derived cells in culture to bind, remove iron from, and grow in the presence of transferrins (Tf) isolated from the sera of species commonly included in tissue culture medium was investigated. Kinetic studies on HeLa cells reveal apparent first-order association rate constants of 0.43 min-1 for human Tf and 0.15 min-1 for equine Tf. Labeled chicken ovo-Tf and fetal bovine Tf were not recognized by the HeLa cells. Competition experiments with HeLa cells that use either isolated Tf or parent serum confirm these findings. Equilibrium binding experiments performed on HeLa cells at 37 degrees C in the presence of 2,4-dinitrophenol to prevent iron removal indicate 1 X 10(6) Tf bound/cell with a dissociation constant (K'D) of 28 nM for human Tf and 182 nM for equine Tf. Equilibrium binding performed at 0 degrees C to prevent endocytosis reveals 4.1-6.7 X 10(5) Tf binding sites/cell with a K'D of 8.3 nM for human Tf and 41.5 nM for equine Tf. Parallel experiments in normal human diploid fibroblast-like MRC-5 cells indicate expression of 0.82-2.78 X 10(5) Tf binding sites/cell with a K'D of 8.2 nM for human and 39.1 nM for equine Tf. Thus, the results of equilibrium binding studies of a more differentiated cell type are consistent with those found for HeLa cells. Fetal bovine Tf was found to compete weakly with labeled human Tf for human receptor on HeLa cells in a soluble receptor assay, with an approximately 500-fold excess needed to reduce binding to half maximal. Iron uptake experiments show an iron donating hierarchy where human greater than horse greater than calf, suggesting that the rate of iron uptake depends on the affinity of receptor for transferrin. Growth experiments involving HeLa cells in chemically defined serum-free medium demonstrate that bovine Tf will support growth as well as human Tf, but at concentrations much higher than are required of human Tf.
Separation of ovotransferrin into C-terminal (OTf/2C) and N-terminal (OTf/2N) half-molecules has made possible the resolution of all expected histidinyl C(2)H resonances by proton nuclear magnetic resonance at 250 MHz. The chemical shift of many of the resonances decreases with increasing pH, allowing construction of titration curves, whereas a few resonances fail to titrate. On formation of the GaIIIOTf/2(C2O4) ternary complexes, two of the low-field C(2)H resonances in each half-molecule fail to titrate. This behavior implicates the imidazole groups giving rise to these resonances as ligands to the bound metal ion. A third C(2)H resonance in each half-molecule undergoes a marked reduction in pK'a on formation of the ternary complex. The imidazole group displaying this resonance is implicated in a proton-relay scheme involved in binding the synergistic anion, oxalate, and a water of hydration on the bound metal ion. The titration curves for the various imidazole resonances have been fit to a four-parameter equation involving estimation of the pK'a, the limiting chemical shift values, and a Hill constant n. Hill constants of less than 1 can be rationalized by correcting the titration curve for the charge Z on the protein as a function of pH and the work function w. The titration curve for the imidazole group in OTf/2C involved in the proton-relay scheme shows a value for n greater than 1, which suggests positive cooperativity in the titration of this residue. The basis for this behavior cannot be rationalized at this time.(ABSTRACT TRUNCATED AT 250 WORDS)
The biphasic binding of diferric transferrin to reticulocytes has been reevaluated with a series of kinetic and equilibrium studies. Identical binding progress profiles were observed for reticulocytes in the presence or absence of oxygen. The relative size of the rapid initial adsorption step could be increased to ca. 65% of the total binding by stripping the cells of endogenous transferrin or reduced to 0% by preloading the cells with nonradiolabeled diferric transferrin. Preloading the cells with 125I-labeled diferric transferrin and chasing with 131I-labeled diferric transferrin revealed identical rate constants for release and binding. Scatchard plots of equilibrium binding of diferric transferrin to reticulocytes showed no significant effects of anaerobiasis or 2,4-dinitrophenol on the equilibrium binding constant or the maximum number of binding sites. The potent microtubule inhibitor nocodazole had no effect on the progress curves for transferrin binding or iron uptake by reticulocytes. It was concluded that the rapid adsorption step in the binding profile represents binding to open receptors and that the slow first-order binding phase represents binding of radiolabeled transferrin to receptors already occupied by nonlabeled endogenous transferrin as this endogenous transferrin leaves the receptors. Furthermore, this first-order binding phase, unlike iron uptake, does not require the presence of active oxidative phosphorylation. These findings are consistent with a specific desorption-adsorption model for the interaction of diferric transferrin with reticulocytes.
In the present paper, gel-filtration studies of diferric-ovotransferrin (Fe2OTf), the individual half-molecules of ovotransferrin (OTf) and equimolar mixtures of half-molecules have been interpreted according to the Gilbert theory as developed by Ackers & Thompson [(1965) Proc. Natl. Acad. Sci. U.S.A. 53, 342-349]. The data indicate that the half-molecules associate reversibly in solution and allow determination of a dissociation constant, Kd' = 8.0 (+/- 2.7) microM. Equilibrium binding studies have been performed using NH4Cl to block removal of iron from equimolar differentially iodine-labelled half-molecules (125I and 131I), in order to evaluate the binding of each to chick-embryo red blood cells under identical conditions. The amount of associated half-molecules over a range of concentrations has been calculated using the constant derived from the gel-filtration experiments described above. A computerized non-linear least-squares regression analysis of the data leads to determination of Kd* (the apparent dissociation constant for the interaction between OTf or half-molecules and the transferrin (Tf) receptors of chick-embryo red blood cells) and Bmax (binding at infinite free-ligand concentration) for the half-molecules similar to those found for Fe2OTf. Recent reports confirm that the two iron-binding domains of both OTf and human lactotransferrin associate non-covalently in solution. Our work shows that the isolated half-molecules of OTf are able to reassociate in solution and that this reassociation has functional significance by allowing the complex to be recognized by the Tf receptor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.