Today HIV infection cannot be cured due to the presence of a reservoir of latently infected cells inducing a viral rebound upon treatment interruption. Hence, the latent reservoir is considered as the major barrier for an HIV cure. So far, efforts to completely eradicate the reservoir via a shock-and-kill approach have proven difficult and unsuccessful. Therefore, more research has been done recently on an alternative block-and-lock functional cure strategy. In contrast to the shock-and-kill strategy that aims to eradicate the entire reservoir, block-and-lock aims to permanently silence all proviruses, even after treatment interruption. HIV silencing can be achieved by targeting different factors of the transcription machinery. In this review, we first describe the underlying mechanisms of HIV transcription and silencing. Next, we give an overview of the different block-and-lock strategies under investigation.
The ability of HIV to integrate into the host genome and establish latent reservoirs is the main hurdle preventing an HIV cure. LEDGINs are small-molecule integrase inhibitors that target the binding pocket of LEDGF/p75, a cellular cofactor that substantially contributes to HIV integration site selection. They are potent antivirals that inhibit HIV integration and maturation. In addition, they retarget residual integrants away from transcription units and towards a more repressive chromatin environment. As a result, treatment with the LEDGIN CX14442 yielded residual provirus that proved more latent and more refractory to reactivation, supporting the use of LEDGINs as research tools to study HIV latency and a functional cure strategy. In this study we compared GS-9822, a potent, pre-clinical lead compound, with CX14442 with respect to antiviral potency, integration site selection, latency and reactivation. GS-9822 was more potent than CX14442 in most assays. For the first time, the combined effects on viral replication, integrase-LEDGF/p75 interaction, integration sites, epigenetic landscape, immediate latency and latency reversal was demonstrated at nanomolar concentrations achievable in the clinic. GS-9822 profiles as a preclinical candidate for future functional cure research.
Despite significant improvements in therapy, the HIV/AIDS pandemic remains an important threat to public health. Current treatments fail to eradicate HIV as proviral DNA persists in long-living cellular reservoirs, leading to viral rebound whenever treatment is discontinued. Hence, a better understanding of viral reservoir establishment and maintenance is required to develop novel strategies to destroy latently infected cells, and/or to durably silence the latent provirus in infected cells. Whereas the mechanism of integration has been well studied from a catalytic point of view, it remains unknown how integration site selection and transcription are linked. In recent years, evidence has grown that lens epithelium-derived growth factor p75 (LEDGF/p75) is the main determinant of HIV integration site selection and that the integration site affects the transcriptional state of the provirus. LEDGINs have been developed as small molecule inhibitors of the interaction between LEDGF/p75 and integrase. Recently, it was shown that LEDGIN treatment in cell culture shifts the residual integrated provirus towards the inner nuclear compartment and out of transcription units in a dose dependent manner. This LEDGIN-mediated retargeting increased the proportion of provirus with a transcriptionally silent phenotype and the residual reservoir proved refractory to reactivation in vitro. LEDGINs provide us with a research tool to study the link between integration and transcription, a quintessential question in retrovirology. LEDGIN-mediated retargeting of the residual reservoirs provides a novel potential “block-and-lock” strategy as a functional cure of HIV infection.
In this study, we have shown that the
in vivo
replication of murine leukemia virus happens independently of BET proteins, which are key host determinants involved in retroviral integration site selection. This finding opens a new research line in the discovery of alternative viral or host factors that may complement the dominant host factor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.