The ultrarare hepatoblastoma (HB) is the most common pediatric liver cancer. HB risk is related to a few rare syndromes, and the molecular bases remain elusive for most cases. We investigated the burden of rare damaging germline variants in 30 Brazilian patients with HB and the presence of additional clinical signs. A high frequency of prematurity (20%) and birth defects (37%), especially craniofacial (17%, including craniosynostosis) and kidney (7%) anomalies, was observed. Putative pathogenic or likely pathogenic monoallelic germline variants mapped to 10 cancer predisposition genes (CPGs: APC, CHEK2, DROSHA, ERCC5, FAH, MSH2, MUTYH, RPS19, TGFBR2 and VHL) were detected in 33% of the patients, only 40% of them with a family history of cancer. These findings showed a predominance of CPGs with a known link to gastrointestinal/colorectal and renal cancer risk. A remarkable feature was an enrichment of rare damaging variants affecting different classes of DNA repair genes, particularly those known as Fanconi anemia genes. Moreover, several potentially deleterious variants mapped to genes impacting liver functions were disclosed. To our knowledge, this is the largest assessment of rare germline variants in HB patients to date, contributing to elucidate the genetic architecture of HB risk.
The multifactorial etiology of pediatric cancer is poorly understood. Environmental factors occurring during embryogenesis can disrupt epigenetic signaling, resulting in several diseases after birth, including cancer. Associations between assisted reproductive technologies (ART), such as in vitro fertilization (IVF), and birth defects, imprinting disorders and other perinatal adverse events have been reported. IVF can result in methylation changes in the offspring, and a link with pediatric cancer has been suggested. In this study, we investigated the peripheral blood methylomes of 11 patients conceived by IVF who developed cancer in childhood. Methylation data of patients and paired sex/aged controls were obtained using the Infinium MethylationEPIC Kit (Illumina). We identified 25 differentially methylated regions (DMRs), 17 of them hypermethylated, and 8 hypomethylated in patients. The most significant DMR was a hypermethylated genomic segment located in the promoter region of LHX6, a transcription factor involved in the forebrain development and interneuron migration during embryogenesis. An additional control group was included to verify the LHX6 methylation status in children with similar cancers who were not conceived by ART. The higher LHX6 methylation levels in IVF patients compared to both control groups (healthy children and children conceived naturally who developed similar pediatric cancers), suggested that hypermethylation at the LHX6 promoter could be due to the IVF process and not secondary to the cancer itself. Further studies are required to evaluate this association and the potential role of LHX6 promoter hypermethylation for tumorigenesis.
O genoma é a base a partir da qual as diferenças de características entre organismos se estabelecem. Entretanto, nem todas as diferenças dentro de uma mesma espécie e indivíduo podem ser explicadas apenas pela combinação de variantes genéticas. Analisando um mesmo indivíduo, por que células que carregam genoma idêntico, são diferentes morfológica e funcionalmente? Para responder algumas questões como essas, apresentamos aqui o conceito de Epigenética e seus mecanismos, explorando seu papel no desenvolvimento embrionário e na regulação da expressão gênica Está em foco neste estudo a associação entre exposição ambiental, alterações epigenéticas e doenças humanas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.