Multidrug resistant P falciparum malaria is common in southeast Asia, but difficult to identify and treat. Genes that encode parasite transport proteins maybe involved in export of drugs and so cause resistance. In this study we show that increase in copy number of pfmdr1, a gene encoding a parasite transport protein, is the best overall predictor of treatment failure with mefloquine. Increase in pfmdr1 copy number predicts failure even after chemotherapy with the highly effective combination of mefloquine and 3 days' artesunate. Monitoring of pfmdr1 copy number will be useful in epidemiological surveys of drug resistance in P falciparum, and potentially for predicting treatment failure in individual patients.
Antimalarial chemotherapy, globally reliant on artemisinin-based combination therapies (ACTs), is threatened by the spread of drug resistance in Plasmodium falciparum parasites. Here we use zinc-finger nucleases to genetically modify the multidrug resistance-1 transporter PfMDR1 at amino acids 86 and 184, and demonstrate that the widely prevalent N86Y mutation augments resistance to the ACT partner drug amodiaquine and the former first-line agent chloroquine. In contrast, N86Y increases parasite susceptibility to the partner drugs lumefantrine and mefloquine, and the active artemisinin metabolite dihydroartemisinin. The PfMDR1 N86 plus Y184F isoform moderately reduces piperaquine potency in strains expressing an Asian/African variant of the chloroquine resistance transporter PfCRT. Mutations in both digestive vacuole-resident transporters are thought to differentially regulate ACT drug interactions with host haem, a product of parasite-mediated haemoglobin degradation. Global mapping of these mutations illustrates where the different ACTs could be selectively deployed to optimize treatment based on regional differences in PfMDR1 haplotypes.
The novel coronavirus SARS-CoV-2 (coronavirus disease 19, or COVID-19) primarily causes pulmonary injury, but has been implicated to cause hepatic injury, both by serum markers and histologic evaluation. The histologic pattern of injury has not been completely described. Studies quantifying viral load in the liver are lacking. Here we report the clinical and histologic findings related to the liver in 40 patients who died of complications of COVID-19. A subset of liver tissue blocks were subjected to polymerase chain reaction (PCR) for viral ribonucleic acid (RNA). Peak levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were elevated; median ALT peak 68 U/l (normal up to 46 U/l) and median AST peak 102 U/l (normal up to 37 U/l). Macrovesicular steatosis was the most common finding, involving 30 patients (75%). Mild lobular necroinflammation and portal inflammation were present in 20 cases each (50%). Vascular pathology, including sinusoidal microthrombi, was infrequent, seen in six cases (15%). PCR of liver tissue was positive in 11 of 20 patients tested (55%). In conclusion, we found patients dying of COVID-19 had biochemical evidence of hepatitis (of variable severity) and demonstrated histologic findings of macrovesicular steatosis and mild acute hepatitis (lobular necroinflammation) and mild portal inflammation. We also identified viral RNA in a sizeable subset of liver tissue samples.
When selection is strong and beneficial alleles have a single origin, local reductions in genetic diversity are expected. However, when beneficial alleles have multiple origins or were segregating in the population prior to a change in selection regime, the impact on genetic diversity may be less clear. We describe an example of such a "soft" selective sweep in the malaria parasite Plasmodium falciparum that involves adaptive genome rearrangements. Amplification in copy number of genome regions containing the pfmdr1 gene on chromosome 5 confer resistance to mefloquine and spread rapidly in the 1990s. Using flanking microsatellite data and real-time polymerase chain reaction determination of copy number, we show that 5-15 independent amplification events have occurred in parasites on the Thailand/Burma border. The amplified genome regions (amplicons) range in size from 14.7 to 49 kb and contain 2-11 genes, with 2-4 copies arranged in tandem. To examine the impact of drug selection on flanking variation, we genotyped 48 microsatellites on chromosome 5 in 326 parasites from a single Thai location. Diversity was reduced in a 170- to 250-kb (10-15 cM) region of chromosomes containing multiple copies of pfmdr1, consistent with hitchhiking resulting from the rapid recent spread of selected chromosomes. However, diversity immediately flanking pfmdr1 is reduced by only 42% on chromosomes bearing multiple amplicons relative to chromosomes carrying a single copy. We highlight 2 features of these results: 1) All amplicon break points occur in monomeric A/T tracts (9-45 bp). Given the abundance of these tracts in P. falciparum, we expect that duplications will occur frequently at multiple genomic locations and have been underestimated as drivers of phenotypic evolution in this pathogen. 2) The signature left by the spread of amplified genome segments is broad, but results in only limited reduction in diversity. If such "soft" sweeps are common in nature, statistical methods based on diversity reduction may be inefficient at detecting evidence for selection in genome-wide marker screens. This may be particularly likely when mutation rate is high, as appears to be the case for gene duplications, and in pathogen populations where effective population sizes are typically very large.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.