Endothelial cells are required to initiate pancreas development from the endoderm. They also control the function of endocrine islets after birth. Here we investigate in developing pancreas how the endothelial cells become organized during branching morphogenesis and how their development affects pancreatic cell differentiation. We show that endothelial cells closely surround the epithelial bud at the onset of pancreas morphogenesis. During branching morphogenesis, the endothelial cells become preferentially located near the central (trunk) epithelial cells and remain at a distance from the branch tips where acinar cells differentiate. This correlates with predominant expression of the angiogenic factor vascular endothelial growth factor-A (VEGF-A) in trunk cells. In vivo ablation of VEGF-A expression by pancreas-specific inactivation of floxed Vegfa alleles results in reduced endothelial development and in excessive acinar differentiation. On the contrary, acinar differentiation is repressed when endothelial cells are recruited around tip cells that overexpress VEGF-A. Treatment of embryonic day 12.5 explants with VEGF-A or with VEGF receptor antagonists confirms that acinar development is tightly controlled by endothelial cells. We also provide evidence that endothelial cells repress the expression of Ptf1a, a transcription factor essential for acinar differentiation, and stimulate the expression of Hey-1 and Hey-2, two repressors of Ptf1a activity. In explants, we provide evidence that VEGF-A signaling is required, but not sufficient, to induce endocrine differentiation. In conclusion, our data suggest that, in developing pancreas, epithelial production of VEGF-A determines the spatial organization of endothelial cells which, in turn, limit acinar differentiation of the epithelium.
BackgroundThe exocrine pancreas is composed of a branched network of ducts connected to acini. They are lined by a monolayered epithelium that derives from the endoderm and is surrounded by mesoderm-derived mesenchyme. The morphogenic mechanisms by which the ductal network is established as well as the signaling pathways involved in this process are poorly understood.ResultsBy morphological analyzis of wild-type and mutant mouse embryos and using cultured embryonic explants we investigated how epithelial morphogenesis takes place and is regulated by chemokine signaling. Pancreas ontogenesis displayed a sequence of two opposite epithelial transitions. During the first transition, the monolayered and polarized endodermal cells give rise to tissue buds composed of a mass of non polarized epithelial cells. During the second transition the buds reorganize into branched and polarized epithelial monolayers that further differentiate into tubulo-acinar glands. We found that the second epithelial transition is controlled by the chemokine Stromal cell-Derived Factor (SDF)-1. The latter is expressed by the mesenchyme, whereas its receptor CXCR4 is expressed by the epithelium. Reorganization of cultured pancreatic buds into monolayered epithelia was blocked in the presence of AMD3100, a SDF-1 antagonist. Analyzis of sdf1 and cxcr4 knockout embryos at the stage of the second epithelial transition revealed transient defective morphogenesis of the ventral and dorsal pancreas. Reorganization of a globular mass of epithelial cells in polarized monolayers is also observed during submandibular glands development. We found that SDF-1 and CXCR4 are expressed in this organ and that AMD3100 treatment of submandibular gland explants blocks its branching morphogenesis.ConclusionIn conclusion, our data show that the primitive pancreatic ductal network, which is lined by a monolayered and polarized epithelium, forms by remodeling of a globular mass of non polarized epithelial cells. Our data also suggest that SDF-1 controls the branching morphogenesis of several exocrine tissues.
The thyroid is a highly vascularized endocrine gland, displaying a characteristic epithelial organization in closed spheres, called follicles. Here we investigate how endothelial cells are recruited into the developing thyroid and if they control glandular organization as well as thyrocytes and C-cells differentiation. We show that endothelial cells closely surround, and then invade the expanding thyroid epithelial cell mass to become closely associated with nascent polarized follicles. This close and sustained endothelial:epithelial interaction depends on epithelial production of the angiogenic factor, Vascular Endothelial Growth Factor-A (VEGF-A), as its thyroid-specific genetic inactivation reduced the endothelial cell pool of the thyroid by > 90%. Vegfa KO also displayed decreased C-cells differentiation and impaired organization of the epithelial cell mass into follicles. We developed an ex vivo model of thyroid explants that faithfully mimicks bilobation of the thyroid anlagen, endothelial and C-cells invasion, folliculogenesis and differentiation. Treatment of thyroid explants at e12.5 with a VEGFR2 inhibitor ablated the endothelial pool and reproduced ex vivo folliculogenesis defects observed in conditional Vegfa KO. In the absence of any blood supply, rescue by embryonic endothelial progenitor cells restored folliculogenesis, accelerated lumen expansion and stimulated calcitonin expression by C-cells. In conclusion, our data demonstrate that, in developing mouse thyroid, epithelial production of VEGF-A is necessary for endothelial cells recruitment and expansion. In turn, endothelial cells control epithelial reorganization in follicles and C-cells differentiation.
Micro-RNAs (miRNAs) are small non-coding RNAs that regulate gene expression, mainly at mRNA post-transcriptional level. Functional maturation of most miRNAs requires processing of the primary transcript by Dicer, an RNaseIII-type enzyme. To date, the importance of miRNA function for normal organogenesis has been demonstrated in several mouse models of tissue-specific Dicer inactivation. However, the role of miRNAs in thyroid development has not yet been addressed. For the present study, we generated mouse models in which Dicer expression has been inactivated at two different stages of thyroid development in thyroid follicular cells. Regardless of the time of Dicer invalidation, the early stages of thyroid organogenesis, preceding folliculogenesis, were unaffected by the loss of small RNAs, with a bilobate gland in place. Nevertheless, Dicer mutant mice were severely hypothyroid and died soon after weaning unless they were substituted with T4. A conspicuous follicular disorganization was observed in Dicer mutant thyroids together with a strong down regulation of Nis expression. With increasing age, the thyroid tissue showed characteristics of neoplastic alterations as suggested by a marked proliferation of follicular cells and an ongoing de-differentiation in the center of the thyroid gland, with a loss of Pax8, FoxE1, Nis and Tpo expression. Together, our data show that loss of miRNA maturation due to Dicer inactivation severely disturbs functional thyroid differentiation. This suggests that miRNAs are mandatory to fine-tune the expression of thyroid specific genes and to maintain thyroid tissue homeostasis.
Background The objective of this pilot study was to identify biological, clinical or structural biomarkers of an intra-articular hyaluronic acid injection efficacy (HYMOVIS®) for the design of a larger placebo-controlled clinical trial studying the disease-modifying activity of this treatment. Methods Forty six patients with symptomatic knee Osteoarthritis (OA) were enrolled in this open-label, prospective, multicenter, pilot study. Patients received two treatment cycles of intra-articular injections (3 mL) of HYMOVIS® (8 mg/mL of hyaluronic acid hexadecylamide) at 6 months interval. Each treatment cycle involved two intra-articular injections 1 week apart. All patients had Magnetic Resonance Imaging (MRI) of the target knee at baseline and 1 year, and blood samples to assess joint biomarkers. The primary outcome was the change in type II collagen-specific biomarkers (Coll2–1, Coll2–1NO2 and CTX-II) after HYMOVIS® treatment versus baseline. Secondary endpoints included levels changes in aggrecan chondroitin sulfate 846 epitope (CS-846), Cartilage Oligomeric Matrix Protein (COMP), procollagen type II N-terminal propeptide (PIIANP), Matrix Metalloprotease (MMP)-3, Myeloperoxidase (MPO) and Interleukin (IL)-6 serum biomarkers, the ratio Coll2–1/PIIANP, CTX-II/PIIANP, variation of MRI cartilage volume, and Knee injury and Osteoarthritis Outcome Score (KOOS) index. Results Coll2–1 serum levels significantly increased overtime while Coll2–1NO2 levels were only increased at D360. Serum PIIANP levels also progressively and significantly enhanced with time. In contrast, other serum biomarker levels including CTX-II, CS-846, COMP, MMP-3, MPO or IL-6 did not change significantly overtime. Interestingly, the ratios Coll2–1/PIIANP and CTX-II/PIIANP decreased, indicating a decrease of cartilage catabolism. Compared to baseline value, MRI cartilage volume and thickness increased in lateral femoral and lateral trochlea compartments and not in medial compartment. These results, in addition to an improvement of T2 mapping score suggest a positive structural effect of the product. Interestingly, WORMS effusion score, an indicator of synovitis, significantly decreased. Finally, global KOOS score and subscales significantly increased overtime while pain at rest, walking pain and patients or investigators global assessment of disease activity decreased. The safety profile was favorable with a low incidence of injection-site pain. Conclusion HYMOVIS®, a well-tolerated intra-articular treatment, significantly enhanced type II collagen turnover as suggested by the increase in Coll2–1 and PIIANP levels and cartilage volume observed by MRI in lateral knee compartment. Importantly, this study provides critical information for the design of a larger phase III clinical trial investigating Disease Modifying effect of HYMOVIS®. Trial registration http://www.isrctn.com/ISRCTN12227846 11/02/2015.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.