The importin-β-like family of nuclear transport receptors mediates the transport of a large number of substrates between the cytoplasm and the nucleus. The family is made up of importins and exportins which shuttle between the nucleus and the cytoplasm and are regulated by the small GTPase Ran.
The expression of human small nuclear U2 RNA genes is controlled by the proximal sequence element (PSE), which determines the start site of transcription, and a distal sequence element (DSE). The DSE contains an octamer element and three Sp1 binding sites. The octamer, like the PSE, is essential for U2 transcription. The Sp1 sites contribute to full promoter activity by distance-dependent cooperative interactions with the transcription factors Sp1 and Oct-1. Here we show that purified recombinant Sp1 and Oct-1 bind cooperatively to the DSE and that they physically interact in vitro. Furthermore, we show that Sp1 and Oct-1 interact in vivo using a yeast two-hybrid system. The domain of Sp1 which interacts with Oct-1 is confined to the region necessary for transcriptional stimulation of U2 RNA transcription. This region contains the glutamine-rich activation domain B and a serine/threonine-rich part. The results demonstrate that Sp1, in addition to binding to a number of other factors, also interacts directly with transcription factor Oct-1.
Previous studies have shown that the cell cycle-regulated E2F transcription factor is subjected to both positive and negative control by phosphorylation. Here we show that in transient transfection experiments, adenovirus E1A activation of the viral E2 promoter is abrogated by coexpression of the viral E4 open reading frame 4 (E4-ORF4) protein. This effect does not to require the retinoblastoma protein that previously has been shown to regulate E2F activity. The inhibitory activity of E4-ORF4 appears to be specific because E4-ORF4 had little effect on, for example, E4-ORF6/7 transactivation of the E2 promoter. We further show that the repressive effect of E4-ORF4 on E2 transcription works mainly through the E2F DNA-binding sites in the E2 promoter. In agreement with this, we find that E4-ORF4 inhibits E2F-1/DP-1-mediated transactivation. We also show that E4-ORF4 inhibits E2 mRNA expression during virus growth. E4-ORF4 has previously been shown to bind to and activate the cellular protein phosphatase 2A. The inhibitory effect of E4-ORF4 was relieved by okadaic acid, which inhibits protein phosphatase 2A activity, suggesting that E4-ORF4 represses E2 transcription by inducing transcription factor dephosphorylation. Interestingly, E4-ORF4 did not inhibit the transactivation capacity of a Gal4-E2F hybrid protein. Instead, E4-ORF4 expression appears to result in reduced stability of E2F/DNA complexes.
We have previously shown that the nonconserved carboxy-terminal exon of the adenovirus type 2 E1A-289R protein contains two interchangeable sequence elements, auxiliary region (AR) 1 and AR2, that are required for efficient CR3-mediated transcriptional activation of the viral E4 promoter (M. Bondesson, C. Svensson, S. Linder, and G. Akusjärvi, EMBO J. 11:3347–3354, 1992). Here we show that CR3-mediated transactivation of all adenovirus early promoters and the HSP70 promoter requires the AR1 element. We further show that AR2 can substitute for AR1 only when artificially juxtaposed to CR3. AR1 consists of six tandem glutamic acid-proline (EP) repeats and is positioned immediately downstream of CR3. Genetic dissection of AR1 showed that the number of EP repeats in AR1 is critical for CR3 function. Thus, reducing or increasing the number of EP repeats reduces the CR3 transactivation capacity. Furthermore, the introduction of amino acid substitutions into AR1 suggested that the net negative charge in AR1 is of critical importance for its function as an enhancer of CR3-mediated transcriptional activation. Using an in vitro binding approach, we showed that the AR1 element is not part of the CR3 promoter localization signal mediating contact with the Sp1, ATF-2, or c-Jun upstream-binding transcription factors. Previous studies have suggested that the 49-amino-acid sequence constituting CR3 represents the minimal domain required for E1A-induced activation of viral early promoters. Since AR1 was required for efficient CR3-mediated transcriptional activation of all tested promoters, we suggest that the carboxy-terminal boundary for the CR3 transactivation domain should be extended to include the AR1 element.
To localize regions in the human transcription factor Sp1, which are involved in activating transcription of the U2 snRNA gene promoter and of a TATA box gene promoter, the activation potentials of GAL4/Sp1 chimeras were analyzed in mammalian cells. In vitro mutagenesis analysis of Sp1 showed that mutation of a hydrophobic amino acid residue in glutamine-rich activation domain A impairs stimulation of transcription from the TATA box promoter, but not from the U2 promoter. Furthermore, we found that similar parts of Sp1 are involved in synergistic activation of transcription together with the SV40 enhancer and with an enhancer which binds a single type of transcription factor. This suggests that the activating mechanism of Sp1 is the same with both enhancers. Interestingly, we found that the glutamine-rich domains A and B, that stimulate transcription from the TATA box promoter were not sufficient for U2 gene activation. Stimulation of U2 transcription required amino acid residues 231-485 of Sp1, which contain the glutamine-rich domain B and a serine/threonine-rich part. Since overlapping, but non-identical parts of Sp1 are required for activation of the two promoter types, we conclude that Sp1 activates the U2 snRNA and TATA box promoters by different mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.