Deposition of amyloid in pancreatic islets is a common feature in human type 2 diabetic subjects but because of its insolubility and low tissue concentrations, the structure of its monomer has not been determined. We describe a peptide, of calculated molecular mass 3905 Da, that was a major protein component of amyloid-rich pancreatic extracts of three type 2 diabetic patients. After collagenase treatment, an extract containing 20-50% amyloid was solubilized by sonication into 70% formic acid and the peptide was purified by gel filtration followed by reverse-phase high-performance liquid chromatography. We term this peptide diabetes-associated peptide, as it was not detected in extracts of pancreas from any of six normal subjects. Diabetes-associated peptide contains 37 amino acids and is 46% identical to the sequences of rat and human calcitonin gene-related peptide, indicating that these peptides are related in evolution. Sequence identities with conserved residues of the insulin A chain were also seen in a 16-residue segment. On extraction, the islet amyloid is particulate and insoluble like the core particles of Alzheimer disease. Their monomers have similar molecular masses, each having a hydropathic region that can probably form 13-pleated sheets.
Diabetes is characterized by hyperglycaemia due to impaired insulin secretion and aberrant glucagon secretion resulting from changes in pancreatic islet cell function and/or mass. The extent to which hyperglycaemia per se underlies these alterations remains poorly understood. Here we show that β-cell-specific expression of a human activating KATP channel mutation in adult mice leads to rapid diabetes and marked alterations in islet morphology, ultrastructure and gene expression. Chronic hyperglycaemia is associated with a dramatic reduction in insulin-positive cells and an increase in glucagon-positive cells in islets, without alterations in cell turnover. Furthermore, some β-cells begin expressing glucagon, whilst retaining many β-cell characteristics. Hyperglycaemia, rather than KATP channel activation, underlies these changes, as they are prevented by insulin therapy and fully reversed by sulphonylureas. Our data suggest that many changes in islet structure and function associated with diabetes are attributable to hyperglycaemia alone and are reversed when blood glucose is normalized.
Islet amyloid polypeptide (IAPP, amylin) is secreted from pancreatic islet beta-cells and converted to amyloid deposits in type 2 diabetes. Conversion from soluble monomer, IAPP 1-37, to beta-sheet fibrils involves changes in the molecular conformation, cellular biochemistry and diabetes-related factors. In addition to the recognised amyloidogenic region, human IAPP (hIAPP) 20-29, the peptides human or rat IAPP 30-37 and 8-20, assume beta-conformation and form fibrils. These three amyloidogenic regions of hIAPP can be modelled as a folding intermediate with an intramolecular beta-sheet. A hypothesis is proposed for co-secretion of proIAPP with proinsulin in diabetes and formation of a 'nidus' adjacent to islet capillaries for subsequent accumulation of secreted IAPP to form the deposit. Although intracellular fibrils have been identified in experimental systems, extracellular deposition predominates in animal models and man. Extensive fibril accumulations replace islet cells. The molecular species of IAPP that is cytotoxic remains controversial. However, since fibrils form invaginations in cell membranes, small non-toxic IAPP fibrillar or amorphous accumulations could affect beta-cell stimulus-secretion coupling. The level of production of hIAPP is important but not a primary factor in islet amyloidosis; there is little evidence for inappropriate IAPP hypersecretion in type 2 diabetes and amyloid formation is generated in transgenic mice overexpressing the gene for human IAPP only against a background of obesity. Animal models of islet amyloidosis suggest that diabetes is induced by the deposits whereas in man, fibril formation appears to result from diabetes-associated islet dysfunction. Islet secretory failure results from progressive amyloidosis which provides a target for new therapeutic interventions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.