Chorioamnionitis frequently induces a fetal inflammatory response syndrome (FIRS), characterized by an elevation of proinflammatory mediators and systemic inflammation. Although there is increasing evidence that inflammation and lipid metabolism influence each other, the effects of chorioamnionitis-induced FIRS on fetal lipid homeostasis are currently not known. Accordingly, we hypothesize that chorioamnionitis induces an inflammatory response in the fetal liver, consequently leading to metabolic disturbances. Chorioamnionitis was induced by intra-amniotic injection of 10 mg endotoxin (control) for 2 d or 2 wk before delivery. Saline injections were given to controls. The effect of chorioamnionitis on hepatic inflammation and metabolic parameters was analyzed in ovine fetuses at the GA of 125 d (normal GA ϭ 150 d). We found that 2 d after the endotoxin injections, inflammatory markers were significantly higher compared with controls. In addition, lipid and glucose metabolism were disturbed in response to endotoxin. Moreover, the antioxidant state capacity was reduced, and hepatic damage was apparent. Two weeks after the endotoxin injections, the fetal livers were still inflamed and had higher glucose concentrations in the blood. In addition, the levels of markers for hepatic damage (alanine aminotransferase and aspartate aminotransferase) were increased. In conclusion, chorioamnionitis induces liver inflammation leading to metabolic disturbances in the fetus. (Pediatr Res 68: 466-472, 2010)
Previously, we identified a locus on 11p influencing obesity in families with type 2 diabetes. Based on mouse studies, we selected TUB as a functional candidate gene and performed association studies to determine whether this controls obesity. We analyzed the genotypes of 13 single nucleotide polymorphisms (SNPs) around TUB in 492 unrelated type 2 diabetic patients with known BMI values. One SNP (rs1528133) was found to have a significant effect on BMI (1.54 kg/m 2 , P ؍ 0.006). This association was confirmed in a population enriched for type 2 diabetes, using 750 individuals who were not selected for type 2 diabetes. Two SNPs in linkage disequilibrium with rs1528133 and mapping to the 3 end of TUB, rs2272382, and rs2272383 also affected BMI by 1.3 kg/m2 (P ؍ 0.016 and P ؍ 0.010, respectively). Combined analysis confirmed this association (P ؍ 0.005 and P ؍ 0.002, respectively). Moreover, comparing 349 obese subjects (BMI >30 kg/m 2 ) from the combined cohort with 289 normal subjects (BMI <25 kg/m 2 ) revealed that the protective alleles have a lower frequency in obese subjects (odds ratio 1.32 [95% CI 1.04 -1.67], P ؍ 0.022). Altogether, data from the tubby mouse as well as these data suggest that TUB could be an important factor in controlling the central regulation of body weight in humans. Diabetes 55:385-389, 2006
BackgroundThe TUB gene, encoding an evolutionary conserved protein, is highly expressed in the hypothalamus and might act as a transcription factor. Mutations in TUB cause late-onset obesity, insulin-resistance and neurosensory deficits in mice. An association of common variants in the TUB gene with body weight in humans has been reported.Methods/FindingsThe aim was to investigate the relationship of single nucleotide polymorphisms (SNPs) of the TUB gene (rs2272382, rs2272383 and rs1528133) with both anthropometry and self-reported macronutrient intake from a validated food frequency questionnaire. These associations were studied in a population-based, cross-sectional study of 1680 middle-aged Dutch women, using linear regression analysis. The minor allele C of the rs1528133 SNP was significantly associated with increased weight (+1.88 kg, P = 0.022) and BMI (+0.56 units, P = 0.05). Compared with non-carriers, both AG heterozygotes and AA homozygotes of the rs2272382 SNP derived less energy from fat (AG: −0.55±0.28%, P = 0.05, AA: −0.95±0.48%, P = 0.047). However, both genotypes were associated with an increased energy intake from carbohydrates (0.69±0.33%, P = 0.04 and 1.68±0.56%, P = 0.003, respectively), mainly because of a higher consumption of mono- and disaccharides. Both these SNPs, rs2272382 and rs1528133, were also associated with a higher glycemic load in the diet. The glycemic load was higher among those with AG and AA genotypes for the variant rs2272382 than among the wild types (+1.49 (95% CI: −0.27–3.24) and +3.89 (95% CI: 0.94–6.85) units, respectively). Carriers of the minor allele C of rs1528133 were associated with an increased glycemic load of 1.85 units compared with non-carriers.ConclusionsGenetic variation of the TUB gene was associated with both body composition and macronutrient intake, suggesting that TUB might influence eating behavior.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.