We explored in 43 healthy subjects the afferent mechanisms of the initial heart rate response to standing by comparing free standing, 70 degrees head-up tilt, handgrip, and contraction of abdominal and leg muscles. The results indicate the following. 1) Standing evokes an immediate, large, bimodal increase of heart rate (HR) of about 20 s duration that far exceeds the gradual HR rise induced by 70 degrees head-up tilt. 2) The immediate HR increase with active standing is due to the exercise reflex and results in a first peak about 3 s after standing briskly. 3) The secondary, more gradual HR increase after 5 s of standing and the subsequent rapid decrease of HR between about 12 and 20 s corresponds through the baroreceptor reflex with a striking fall, recovery, and sometimes overshoot of arterial pressure. 4) The maximum HR increase found after about 12 s of standing is augmented and delayed after rest. 5) The time course of the initial HR response is not modified by physical training. We conclude that active and passive changes of posture result in fundamentally different cardiovascular effects for about 20 s and that "central command," muscle receptors, high-pressure receptors, low-pressure receptors, and the plasma catecholamine level are probably all involved in the initial HR response to standing.
While the opportunities of ML and AI in healthcare are promising, the growth of complex data-driven prediction models requires careful quality and applicability assessment before they are applied and disseminated in daily practice. This scoping review aimed to identify actionable guidance for those closely involved in AI-based prediction model (AIPM) development, evaluation and implementation including software engineers, data scientists, and healthcare professionals and to identify potential gaps in this guidance. We performed a scoping review of the relevant literature providing guidance or quality criteria regarding the development, evaluation, and implementation of AIPMs using a comprehensive multi-stage screening strategy. PubMed, Web of Science, and the ACM Digital Library were searched, and AI experts were consulted. Topics were extracted from the identified literature and summarized across the six phases at the core of this review: (1) data preparation, (2) AIPM development, (3) AIPM validation, (4) software development, (5) AIPM impact assessment, and (6) AIPM implementation into daily healthcare practice. From 2683 unique hits, 72 relevant guidance documents were identified. Substantial guidance was found for data preparation, AIPM development and AIPM validation (phases 1–3), while later phases clearly have received less attention (software development, impact assessment and implementation) in the scientific literature. The six phases of the AIPM development, evaluation and implementation cycle provide a framework for responsible introduction of AI-based prediction models in healthcare. Additional domain and technology specific research may be necessary and more practical experience with implementing AIPMs is needed to support further guidance.
IMPORTANCE Discrepancies in oxygen saturation measured by pulse oximetry (SpO 2 ), when compared with arterial oxygen saturation (SaO 2 ) measured by arterial blood gas (ABG), may differentially affect patients according to race and ethnicity. However, the association of these disparities with health outcomes is unknown. OBJECTIVETo examine racial and ethnic discrepancies between SaO 2 and SpO 2 measures and their associations with clinical outcomes. DESIGN, SETTING, AND PARTICIPANTS This multicenter, retrospective, cross-sectional study included 3 publicly available electronic health record (EHR) databases (ie, the Electronic Intensive Care Unit-Clinical Research Database and Medical Information Mart for Intensive Care III and IV) as well as Emory Healthcare (2014-2021) and Grady Memorial (2014-2020) databases, spanning 215 hospitals and 382 ICUs. From 141 600 hospital encounters with recorded ABG measurements, 87 971 participants with first ABG measurements and an SpO 2 of at least 88% within 5 minutes before the ABG test were included.EXPOSURES Patients with hidden hypoxemia (ie, SpO 2 Ն88% but SaO 2 <88%). MAIN OUTCOMES AND MEASURESOutcomes, stratified by race and ethnicity, were SaO 2 for each SpO 2 , hidden hypoxemia prevalence, initial demographic characteristics (age, sex), clinical outcomes (in-hospital mortality, length of stay), organ dysfunction by scores (Sequential Organ Failure Assessment [SOFA]), and laboratory values (lactate and creatinine levels) before and 24 hours after the ABG measurement. RESULTS The first SpO 2 -SaO 2 pairs from 87 971 patient encounters (27 713 [42.9%] women; mean [SE] age, 62.2 [17.0] years; 1919 [2.3%] Asian patients; 26 032 [29.6%] Black patients; 2397 [2.7%] Hispanic patients, and 57 632 [65.5%] White patients) were analyzed, with 4859 (5.5%) having hidden hypoxemia. Hidden hypoxemia was observed in all subgroups with varying incidence (Black: 1785 [6.8%]; Hispanic: 160 [6.0%]; Asian: 92 [4.8%]; White: 2822 [4.9%]) and was associated with greater organ dysfunction 24 hours after the ABG measurement, as evidenced by higher mean (SE) SOFA scores (7.2 [0.1] vs 6.29 [0.02]) and higher in-hospital mortality (eg, among Black patients: 369 [21.1%] vs 3557 [15.0%]; P < .001). Furthermore, patients with hidden hypoxemia had higher mean (SE) lactate levels before (3.15 [0.09] mg/dL vs 2.66 [0.02] mg/dL) and 24 hours after (2.83 [0.14] mg/dL vs 2.27 [0.02] mg/dL) the ABG test, with less lactate clearance (−0.54 [0.12] mg/dL vs −0.79 [0.03] mg/dL).
he prospect of improved clinical outcomes and more efficient health systems has fueled a rapid rise in the development and evaluation of AI systems over the last decade. Because most AI systems within healthcare are complex interventions designed as clinical decision support systems, rather than autonomous agents, the interactions among the AI systems, their users and the implementation environments are defining components of the AI interventions' overall potential effectiveness. Therefore, bringing AI systems from mathematical performance to clinical utility needs an adapted, stepwise implementation and evaluation pathway, addressing the complexity of this collaboration between two independent forms of intelligence, beyond measures of effectiveness alone 1 . Despite indications that some AI-based algorithms now match the accuracy of human experts within preclinical in silico studies 2 , there
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.