This paper introduces a new aerodynamic traction principle for handling delicate and clean products, such as silicon wafers, glass sheets or flat foodstuff. The product is carried on a thin air cushion and transported along the system by induced air flows. This induced air flow is the indirect effect of strong vertical air-jets that pull the surrounding fluid. The paper provides a qualitative explanation of the operating principles and a description of the experimental device. Very first experimental results with active control are presented. The maximum velocity and acceleration that can be obtained for the considered device geometry meet the requirements for industrial applications.
In this paper, a new contactless conveyor system based on an original aerodynamic traction principle is described and experimented. This device is able to convey without any contact flat objects like silicon wafer, glass sheets or foodstufff thanks to an air cushion and induced air flows. A model of the system is established and the identification of the parameters is carried out. A closed-loop control is proposed for one dimension position control and position tracking. The PID-controller gives good performances for different reference signals. Its robustness to object change and perturbation rejection are also tested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.