The mouse mammary tumor virus (MMTV) provirus was found to target the Notch1 gene, producing insertional mutations in mammary tumors of MMTV/neu transgenic (Tg) mice. In these mammary tumors, the Notch1 gene is truncated upstream of the transmembrane domain, and the resulting Notch1 intracellular domain (Notch1(intra)), deleted of most extracellular sequences, is overexpressed. Although Notch1(intra) transforms mammary epithelial cells in vitro, its role in mammary gland tumor formation in vivo was not studied. Therefore, we generated MMTV/Notch1(intra) Tg mice that overexpress murine Notch1(intra) in the mammary glands. We observed that MMTV/Notch1(intra) Tg females were unable to feed their pups because of impaired ductal and lobulo-alveolar mammary gland development. This was associated with decreased proliferation of ductal and alveolar epithelial cells during rapid expansion at puberty and in early pregnancy, as well as decreased production of beta-casein. Notch1(intra) repressed expression of the beta-casein gene promoter, as assessed in vitro with a beta-casein/luciferase reporter construct. The MMTV/Notch1(intra) Tg females developed mammary gland tumors, confirming the oncogenic potential of Notch1(intra) in vivo. Furthermore, MMTV/Notch3(intra) Tg mice exhibited a very similar phenotype. Thus, these Tg mice represent novel models for studying the role of Notch1 or Notch3 in the development and transformation of the mammary gland.
The Notch signaling pathway is involved in a variety of developmental processes. Here, we characterize the phenotypes developing in the reproductive organs of male transgenic (Tg) mice constitutively expressing the activated mouse Notch1 intracellular domain (Notch1(intra)) under the regulatory control of the mouse mammary tumor virus (MMTV) long terminal repeat (LTR). Tg expression was detected in testis, vas deferens and epididymis by Northern blot analysis. In situ hybridization with a Notch1-specific probe lacked sensitivity to detect expression in normal-appearing cells, but demonstrated expression in hyperplastic epithelial cells of the vas deferens, epididymis and efferent ducts. Tg males from three independent founder lines were sterile. Histological analysis of reproductive organs of young Tg males (postnatal ages 8 and 21) showed no difference compared to those of non-Tg males. In contrast, in adult Tg mice from day 38 onwards, the efferent ducts, the vas deferens and most epididymal segments revealed bilateral epithelial cell hyperplasia with absence of fully differentiated epithelial cells. Electron microscopy confirmed the uniformly undifferentiated state of these cells. Immunohistochemistry with anti-PCNA antibody also revealed enhanced proliferation of Tg epididymis. In adult Tg testis, the different generations of germ cells of seminiferous tubules appeared normal, although some tubules were highly dilated and revealed an absence of early and/or late spermatids. The epithelial cells of the Tg tubuli recti and rete testis were not abnormal, but the rete testis was highly dilated and contained numerous spermatozoa, suggesting a downstream blockage. Consistent with a blockage of efferent ducts often seen at the rete testis/efferent duct interface, spermatozoa were absent in epididymis of all adult Tg mice and in all highly hyperplastic efferent duct tubules of these Tg mice. Such a blockage was visualized by injection of Evans blue dye into the rete testis lumen. Finally, the presence of ectopic hyperplastic efferent duct tubules was observed within the testicular parenchyma itself, outside their normal territory, suggesting that Notch1 signaling is involved in the establishment of these borders. This phenotype seems to represent a novel developmental defect in mammals. Together, these results show that constitutive Notch1 signaling significantly affects the development of male reproductive organs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.