IntroductionRecent evidence suggests that tissue accumulation of senescent p16INK4a-positive cells during the life span would be deleterious for tissue functions and could be the consequence of inherent age-associated disorders. Osteoarthritis (OA) is characterized by the accumulation of chondrocytes expressing p16INK4a and markers of the senescence-associated secretory phenotype (SASP), including the matrix remodeling metalloproteases MMP1/MMP13 and pro-inflammatory cytokines interleukin-8 (IL-8) and IL-6. Here, we evaluated the role of p16INK4a in the OA-induced SASP and its regulation by microRNAs (miRs).MethodsWe used IL-1-beta-treated primary OA chondrocytes cultured in three-dimensional setting or mesenchymal stem cells differentiated into chondrocyte to follow p16INK4a expression. By transient transfection experiments and the use of knockout mice, we validate p16INK4a function in chondrocytes and its regulation by one miR identified by means of a genome-wide miR-array analysis.Resultsp16INK4a is induced upon IL-1-beta treatment and also during in vitro chondrogenesis. In the mouse model, Ink4a locus favors in vivo the proportion of terminally differentiated chondrocytes. When overexpressed in chondrocytes, p16INK4a is sufficient to induce the production of the two matrix remodeling enzymes, MMP1 and MMP13, thus linking senescence with OA pathogenesis and bone development. We identified miR-24 as a negative regulator of p16INK4a. Accordingly, p16INK4a expression increased while miR-24 level was repressed upon IL-1-beta addition, in OA cartilage and during in vitro terminal chondrogenesis.ConclusionsWe disclosed herein a new role of the senescence marker p16INK4a and its regulation by miR-24 during OA and terminal chondrogenesis.
Neuronal loss is a salient feature of prion diseases; however, its causes and mechanisms are unclear The possibility that it could occur through an apoptotic process has been postulated and is consistent with the lack of inflammation in prion disorders as supported by experimental studies. In order to test this hypothesis in humans, we examined samples of frontal and temporal cerebral cortex, striatum, thalamus, and cerebellum from 16 patients who died from Creutzfeldt-Jakob disease. They included 5 sporadic cases, 5 familial, 3 iatrogenic, and 3 cases with the new variant. These were compared with age and sex matched controls. Using in situ end labelling, we identified apoptotic neurons in all the cases of Creutzfeldt-Jakob disease. A single labelled neuron was found in the eldest control. Apoptotic neurons were mostly found in damaged regions and their presence and abundance seemed to correlate closely with neuronal loss. This supports the view that apoptosis of neurons is a feature of prion diseases and may contribute to the neuronal loss which is one of the main characteristics of these conditions. Neuronal apoptosis also correlated well with microglial activation, as demonstrated by the expression of major histocompatibility complex class II antigens, and axonal damage, as identified by beta-amyloid protein precursor immunostaining. In contrast, we found no obvious relationship between the topography and severity of neuronal apoptosis and the type, topography, and abundance of prion protein deposits as demonstrated by immunocytochemistry.
The Zenith stent-graft had the best resistance to dislodgment. An additional Palmaz stent placed at the proximal attachment site greatly improves endograft fixation regardless of the type of stent-graft. For complex aneurysm necks or for intraoperative type I endoleak management, an adjunctive Palmaz stent could be used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.