While judging their sensory environments, decision-makers seem to use the uncertainty about their choices to guide adjustments of their subsequent behaviour. One possible source of these behavioural adjustments is arousal: decision uncertainty might drive the brain's arousal systems, which control global brain state and might thereby shape subsequent decision-making. Here, we measure pupil diameter, a proxy for central arousal state, in human observers performing a perceptual choice task of varying difficulty. Pupil dilation, after choice but before external feedback, reflects three hallmark signatures of decision uncertainty derived from a computational model. This increase in pupil-linked arousal boosts observers' tendency to alternate their choice on the subsequent trial. We conclude that decision uncertainty drives rapid changes in pupil-linked arousal state, which shape the serial correlation structure of ongoing choice behaviour.
Classical models of perceptual decision-making assume that animals use a single, consistent strategy to form decisions, or that decision-making strategies evolve slowly over time. Here we present new analyses suggesting that this common view is incorrect. We analyzed data from two mouse decision-making experiments and found that choice behavior relies on an interplay between multiple interleaved strategies. These strategies, characterized by states in a hidden Markov model, persist for tens to hundreds of trials before switching, and may alternate multiple times within a session.The identified strategies were highly consistent across animals, consisting of a single "engaged" state, in which decisions relied heavily on the sensory stimulus, and several biased or disengaged states in which errors frequently occurred. These results provide a powerful alternate explanation for "lapses" often observed in psychophysical experiments, and suggest that standard measures of performance mask the presence of dramatic changes in strategy across trials.
People's assessments of the state of the world often deviate systematically from the information available to them [1]. Such biases can originate from people's own decisions: committing to a categorical proposition, or a course of action, biases subsequent judgment and decision-making. This phenomenon, called confirmation bias [2], has been explained as suppression of post-decisional dissonance [3, 4]. Here, we provide insights into the underlying mechanism. It is commonly held that decisions result from the accumulation of samples of evidence informing about the state of the world [5-8]. We hypothesized that choices bias the accumulation process by selectively altering the weighting (gain) of subsequent evidence, akin to selective attention. We developed a novel psychophysical task to test this idea. Participants viewed two successive random dot motion stimuli and made two motion-direction judgments: a categorical discrimination after the first stimulus and a continuous estimation of the overall direction across both stimuli after the second stimulus. Participants' sensitivity for the second stimulus was selectively enhanced when that stimulus was consistent with the initial choice (compared to both, first stimuli and choice-inconsistent second stimuli). A model entailing choice-dependent selective gain modulation explained this effect better than several alternative mechanisms. Choice-dependent gain modulation was also established in another task entailing averaging of numerical values instead of motion directions. We conclude that intermittent choices direct selective attention during the evaluation of subsequent evidence, possibly due to decision-related feedback in the brain [9]. Our results point to a recurrent interplay between decision-making and selective attention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.