Abstract-In this paper, we develop a regression tree approach to identification and prediction of signals that evolve according to an unknown nonlinear state space model. In this approach, a tree is recursively constructed that partitions the p-dimensional state space into a collection of piecewise homogeneous regions utilizing a 2 p -ary splitting rule with an entropy-based node impurity criterion. On this partition, the joint density of the state is approximately piecewise constant, leading to a nonlinear predictor that nearly attains minimum mean square error. This process decomposition is closely related to a generalized version of the thresholded AR signal model (ART), which we call piecewise constant AR (PCAR). We illustrate the method for two cases where classical linear prediction is ineffective: a chaotic "doublescroll" signal measured at the output of a Chua-type electronic circuit and a second-order ART model. We show that the prediction errors are comparable with the nearest neighbor approach to nonlinear prediction but with greatly reduced complexity.Index Terms-Chaotic signal analysis, nonlinear and nonparametric modeling and prediction, piecewise constant AR models, recursive partitioning, regression trees.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.