Surface chemistry evaluation is crucial in assessing the efficacy of chemical decontamination products for titanium implants. This study aimed to investigate the effectiveness of chemical decontamination solutions in cleaning a contaminated dental implant surface and to evaluate the potential of combining Pluronic gel with hydrogen peroxide (NuBone®Clean) by evaluating pellicle disruption and re-formation on implant surfaces. In addition, ensuring safety with in vitro and human testing protocols. X-ray Photoelectron Spectroscopy (XPS) was utilised for surface analysis. All the tested gels had some effect on the surface cleanness except for PrefGel®. Among the tested chemical decontamination candidates, NuBone®Clean demonstrated effectiveness in providing a cleaner titanium surface. Furthermore, none of the tested chemical agents exhibited cytotoxic effects, and the safety assessment showed no adverse events. The results of this study highlight the significance of conducting comprehensive evaluations, encompassing safety and efficacy, before introducing new chemical agents for dental treatments. The findings suggest that NuBone®Clean shows potential as a chemical decontamination solution for implant surfaces. However, further investigation through randomised clinical trials is necessary. By adhering to rigorous testing protocols, the development of safe and efficient chemical decontamination strategies can be advanced, benefiting patients and promoting progress in implant dentistry.
Background Irisin is expressed in human periodontal ligament (hPDL), and its administration enhances growth, migration and matrix deposition in hPDL cells cultured in monolayers in vitro. Objectives To identify whether irisin affects the gene expression patterns directing the morphology, mechanical properties, extracellular matrix (ECM) formation, osteogenic activity and angiogenic potential in hPDL cell spheroids cultured in 3D. Materials and Methods Spheroids of primary human hPDL cells were generated in a rotational 3D culture system and treated with or without irisin. The gene expression patterns were evaluated by Affymetrix microarrays. The morphology of the spheroids was characterized using histological staining. Mechanical properties were quantified by nanoindentation. The osteogenic and angiogenic potential of spheroids were assessed through immunofluorescence staining for collagen type I, periostin fibronectin and von Willebrand factor (vWF), and mRNA expression of osteogenic markers. The secretion of multiple myokines was evaluated using Luminex immunoassays. Results Approximately 1000 genes were differentially expressed between control and irisin‐treated groups by Affymetrix. Several genes related to ECM organization were differentially expressed, and multiple deubiquitinating enzymes were upregulated in the irisin‐exposed samples analyzed. These represent cellular and molecular mechanisms indicative of a role for irisin in tissue remodeling. Irisin induced a rim‐like structure on the outer region of the hPDL spheroids, ECM‐related protein expression and the stiffness of the spheroids were enhanced by irisin. The expression of osteogenic and angiogenetic markers was increased by irisin. Conclusions Irisin altered the morphology in primary hPDL cell‐derived spheroids, enhanced its ECM deposition, mechanical properties, differentiation and remodeling potential.
Surface chemistry evaluation plays a crucial role in assessing the efficacy of chemical decontamination products for titanium implants. This study aimed to investigate the effectiveness of chemical decontamination solutions in cleaning a contaminated dental implant surface and to evaluate the potential of combining Pluronic gel with hydrogen peroxide (NuBone®Clean) by evaluating pellicle disruption and re-formation on implant surfaces. In addition, ensuring safety with in- vitro and human testing protocols. X-ray Photoelectron Spectroscopy (XPS) was utilized for surface analysis. All the tested gels had some effect on the surface cleanness except for PrefGel®. Among the tested chemical decontamination candidates, NuBone®Clean demonstrated effectiveness in providing a cleaner titanium surface. Furthermore, none of the tested chemical agents exhibited any cytotoxic effects, and the safety assessment showed no adverse events. The results of this study highlight the significance of conducting comprehensive evaluations, encompassing safety and efficacy, before introducing new chemical agents for dental treatments. The findings suggest that NuBone®Clean shows potential as a chemical decontamination solution for implant surfaces. However, further investigation through randomized clinical trials is necessary. By adhering to rigorous testing protocols, the development of safe and efficient chemical decontamination strategies can be advanced, benefiting patients and promoting progress in the field of implant dentistry.
Objectives: This study aimed to identify disease-related markers in persistent apical periodontitis (PAP) biopsies and examine whether these were associated with comorbidities. Materials and method: The levels of the cytokines GM-CSF, IFN-γ, IL-2, IL-6, IL-9, IL-10, IL-13, IL-15, IL-17E/IL-25, IL-21, IL-23, IL-27, IL-28A/IFN -λ2, IL-33, MIP-3α/CCL20 and TNF-α were determined in lesions from patients with persistent apical periodontitis (n = 20) and compared to healthy bone samples (n = 20). Results: We identified eleven cytokines to be differently expressed, and among them, IL-2, IL-6, IL-17E, IL-21, and IL-27 appeared to drive the discrepancy between the disease and healthy groups. The levels of T follicular helper (Tfh) cell promoting cytokines (IL-21, IL-6, IL-27) were enhanced while T helper (Th) 1 cell promoting cytokine (IL-2), Th2 cell promoting cytokine (IL-13), and Th17 cell promoting cytokine (IL-17E) were reduced in the PAP group. The data also indicate that Tfh cell differentiation (IL-21), along with Th1 (GM-CSF, IFNγ), Th2 (IL-13), and Th17 (GM-CSF) cell differentiation, might be increased in the subpopulation of patients suffering from rheumatoid arthritis, whereas no differences were found in patients with cardiovascular diseases. Conclusions: A cluster of potential cellular markers for PAP was identified. The lesions contained additional factors that might be associated with differentiation of various T cell populations. Clinical Relevance: Molecular analyses of PAP may result in identification of prognostic markers.
Objectives This study aimed to identify disease-related markers in persistent apical periodontitis (PAP) biopsies and examine whether these were associated with comorbidities like rheumatoid arthritis (RA) and cardiovascular diseases (CVD). Materials and method The levels of the cytokines/chemokines GM-CSF, IFN-γ, IL-2, IL-6, IL-9, IL-10, IL-13, IL-15, IL-17E/IL-25, IL-21, IL-23, IL-27, IL-28A/IFN -λ2, IL-33, MIP-3α/CCL20, and TNF-α were determined in lesions from patients with PAP (n = 20) and compared to healthy bone samples (n = 20). Results We identified eleven cytokines to be differently expressed, and among them, IL-2, IL-6, IL-17E, IL-21, and IL-27 appeared to drive the discrepancy between the disease and healthy groups. The levels of T follicular helper (Tfh) cell promoting cytokines (IL-21, IL-6, IL-27) were enhanced while T helper (Th) 1 cell promoting cytokine (IL-2), Th2 cell promoting cytokine (IL-13), and Th17 cell promoting cytokine (IL-17E) were reduced in the PAP group. The data also indicate that Tfh cell differentiation (IL-21), along with Th1 (GM-CSF, IFNγ), Th2 (IL-13), and Th17 (GM-CSF) cell differentiation, might be increased in the subpopulation of patients suffering from RA, whereas no differences were found in patients with CVD. Conclusions Levels of cytokines/chemokines in PAP were identified, and cluster analyzes indicated that these markers may be associated with the differentiation of different T cell populations. Patients with PAP and RA comorbidities showed elevated levels of markers reinforcing this association. Clinical relevance Molecular analyses of PAP may result in identification of prognostic markers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.