The T,-accordion COSY experiment has been applied to acyl carrier protein (ACP) to locate the divalent ion binding sites in the protein using the paramagnetic ion, Mn2+, as a substitute for Cazc. Replacement with Mn2+ leads to an enhancement of proton spin-lattice (T,) relaxation rates. These enhancements have a l/r6 distance dependence that makes them extremely useful in structural analyses. Ion-proton distances ranging from 3.0 to 9.0 A have been obtained from this experiment and subsequently used as constraints in the molecular mechanics module of AMBER to refine a protein structure.2D NMR; MnZ+; Acyl carrier protein; Spin-lattice relaxation rate; AMBER
The growth factor receptor-bound protein-2 (Grb-2) is an adaptor protein that mediates signal transduction pathways. Chemical shift assignments were obtained for the SH2 domain of Grb2 by heteronuclear NMR spectroscopy, employing the uniformly 13C-/15N-enriched protein as well as the protein containing selectively 15N-enriched amino acids. Using the Chemical Shift Index (CSI) method, the chemical shift indices of four nuclei, 1H alpha, 13C alpha, 13C beta and 13CO, were used to derive the secondary structure of the protein. Nuclear Overhauser enhancements (NOEs) were then employed to confirm the secondary structure. The CSI results were compared to the secondary structural elements predicted for the Grb2 SH2 domain from a sequence alignment [Lee et al. (1994) Structure, 2, 423-438]. The core structure of the SH2 domain contains an antiparallel beta-sheet and two alpha-helices. In general, the secondary structural elements determined from the CSI method agree well with those predicted from the sequence alignment.
A set of high-resolution three-dimensional solution structures of the Src homology region-2 (SH2) domain of the growth factor receptor-bound protein-2 was determined using heteronuclear NMR spectroscopy. The NMR data used in this study were collected on a stable monomeric protein solution that was free of protein aggregates and proteolysis. The solution structure was determined based upon a total of 1439 constraints, which included 1326 nuclear Overhauser effect distance constraints, 70 hydrogen bond constraints, and 43 dihedral angle constraints. Distance geometry-simulated annealing calculations followed by energy minimization yielded a family of 18 structures that converged to a root-mean-square deviation of 1.09 A for all backbone atoms and 0.40 A for the backbone atoms of the central beta-sheet. The core structure of the SH2 domain contains an antiparallel beta-sheet flanked by two parallel alpha-helices displaying an overall architecture that is similar to other known SH2 domain structures. This family of NMR structures is compared to the X-ray structure and to another family of NMR solution structures determined under different solution conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.