Background Microbleeds, small perivascular collections of hemosiderin manifested radiologically as hypointensities on gradient-echo magnetic resonance imaging (MRI), are important markers of small vessel pathology. Despite their clinical relevance, little is known about their prevalence and demographic correlates, particularly among ethnically diverse older adults. We examined demographic and clinical correlates of regional microbleeds in a multi-ethnic cohort and examined categorization schemes of microbleed distribution and severity. Methods Between 2005 and 2007, 769 individuals participated in a MRI study as part of the Washington Heights/Inwood Columbia Aging Project. Approximately four years later, 243 out of 339 participants (mean age=84.50) who returned for a repeat MRI had gradient-echo scans for microbleed assessment and comprised the sample. We examined the association of deep and lobar microbleeds with age, sex, education, vascular factors, cognitive status and markers of small vessel disease. Results Sixty-seven of the 243(27%) participants had at least one microbleed. Individuals with microbleeds were more likely to have a history of stroke than individuals without. When categorized as having either no microbleeds, microbleeds in deep regions only, in lobar regions only, and both deep and lobar microbleeds, hypertension, proportion of strokes, and white matter hyperintensity volume (WMH) increased monotonically across the four groups. Number of lobar microbleeds correlated with WMH volume and diastolic blood pressure. Conclusions Microbleeds in deep and lobar locations are associated with worse outcomes than microbleeds in either location alone, although presence of lobar microbleeds appears to be more clinically relevant.
Alzheimer’s disease (AD) is the most common neurodegenerative disease and the leading cause of dementia. In addition to grey matter pathology, white matter changes are now recognized as an important pathological feature in the emergence of the disease. Despite growing recognition of the importance of white matter abnormalities in the pathogenesis of AD, the causes of white matter degeneration are still unknown. While multiple studies propose Wallerian-like degeneration as the source of white matter change, others suggest that primary white matter pathology may be due, at least in part, to other mechanisms, including local effects of toxic Aβ peptides. In the current study, we investigated levels of soluble amyloid-beta (Aβ) in white matter of AD patients (n=12) compared with controls (n=10). Fresh frozen white matter samples were obtained from anterior (Brodmann area 9) and posterior (Brodmann area 1, 2 and 3) areas of post-mortem AD and control brains. ELISA was used to examine levels of soluble Aβ -42 and Aβ -40. Total cortical neuritic plaque severity rating was derived from individual ratings in the following areas of cortex: mid-frontal, superior temporal, pre-central, inferior parietal, hippocampus (CA1), subiculum, entorhinal cortex, transentorhinal cortex, inferior temporal, amygdala and basal forebrain. Compared with controls, AD samples had higher white matter levels of both soluble Aβ -42 and Aβ -40. While no regional white matter differences were found in Aβ -40, Aβ -42 levels were higher in anterior regions than in posterior regions across both groups. After statistically controlling for total cortical neuritic plaque severity, differences in both soluble Aβ -42 and Aβ -40 between the groups remained, suggesting that white matter Aβ peptides accumulate independent of overall grey matter fibrillar amyloid pathology and are not simply a reflection of overall amyloid burden. These results shed light on one potential mechanism through which white matter degeneration may occur in AD. Given that white matter degeneration may be an early marker of disease, preceding grey matter atrophy, understanding the mechanisms and risk factors that may lead to white matter loss could help to identify those at high risk and to intervene earlier in the pathogenic process.
Background: Normal aging is associated with a decline in cognitive abilities, particularly in the domains of psychomotor speed and executive functioning. However, ‘aging,' per se, is not a cause of cognitive decline but rather a variable that likely captures multiple accumulating biological changes over time that collectively affect mental abilities. Recent work has focused on the role of cerebrovascular disease as one of the biological changes. In the current study, we examined whether lobar microbleeds - magnetic resonance imaging (MRI) signal voids due to hemosiderin deposits secondary to cerebral amyloid angiopathy - are associated with cognitive decline in normal aging. Previous studies that reported a relationship between the presence of lobar microbleeds and decreased cognitive abilities have been primarily cross-sectional. Here, we used a retrospective longitudinal design to examine whether the presence of lobar microbleeds is associated with the rate of cognitive decline among non-demented older adults. Methods: Participants came from an ongoing longitudinal community-based aging study, in which subjects are evaluated at 18-24 months intervals and received a full medical, neurological, and neuropsychological examination at each of the follow-up visits. Gradient echo MRI scans were available on 197 non-demented participants (mean age: 84.15 ± 5.02 years). Microbleeds were rated visually on axial view and divided into subcortical (basal ganglia, cerebellum) and lobar (frontal, temporal, parietal, occipital lobe) regions, and confirmed with coronal and sagittal views to exclude artifacts. Cognition was assessed with a neuropsychological battery, providing summary scores for memory, language, executive, and visuospatial abilities. Using general estimating equations (GEE), we compared cognition cross-sectionally between individuals with 2 or more (n = 11) and fewer than 2 (n = 186) lobar microbleeds and examined longitudinal cognitive change beginning 9.47 ± 3.13 years before the MRI scan. Results: Subjects with 2 or more lobar microbleeds had worse executive functioning at the visit closest to the MRI scan (β = -0.044; p < 0.001)and had a faster decline in executive function over time (β = -0.072; p = 0.012) than subjects with fewer than 2 lobar microbleeds. The two groups were similar in age at scan date, education, ethnicity, sex distribution, and cognitive performance at first visit. Conclusions: Lobar microbleeds, a marker of cerebral amyloid angiopathy, are associated with an accelerated rate of executive function decline. The presence of cerebral amyloid angiopathy may be an important source of cognitive decline in aging. Future work should examine how cerebral amyloid angiopathy interacts with neurodegenerative processes, such as Alzheimer's disease.
Alzheimer’s disease (AD) is the most common neurodegenerative disease and the leading cause of dementia. In addition to grey matter pathology, white matter changes are now recognized as an important pathological feature in the emergence of the disease. Despite growing recognition of the importance of white matter abnormalities in the pathogenesis of AD, the causes of white matter degeneration are still unknown. While multiple studies propose Wallerian-like degeneration as the source of white matter change, others suggest that primary white matter pathology may be due, at least in part, to other mechanisms, including local effects of toxic Aβ peptides. In the current study, we investigated levels of soluble amyloid-beta (Aβ) in white matter of AD patients (n=12) compared with controls (n=10). Fresh frozen white matter samples were obtained from anterior (Brodmann area 9) and posterior (Brodmann area 1, 2 and 3) areas of post-mortem AD and control brains. ELISA was used to examine levels of soluble Aβ -42 and Aβ -40. Total cortical neuritic plaque severity rating was derived from individual ratings in the following areas of cortex: mid-frontal, superior temporal, pre-central, inferior parietal, hippocampus (CA1), subiculum, entorhinal cortex, transentorhinal cortex, inferior temporal, amygdala and basal forebrain. Compared with controls, AD samples had higher white matter levels of both soluble Aβ -42 and Aβ -40. While no regional white matter differences were found in Aβ -40, Aβ -42 levels were higher in anterior regions than in posterior regions across both groups. After statistically controlling for total cortical neuritic plaque severity, differences in both soluble Aβ -42 and Aβ -40 between the groups remained, suggesting that white matter Aβ peptides accumulate independent of overall grey matter fibrillar amyloid pathology and are not simply a reflection of overall amyloid burden. These results shed light on one potential mechanism through which white matter degeneration may occur in AD. Given that white matter degeneration may be an early marker of disease, preceding grey matter atrophy, understanding the mechanisms and risk factors that may lead to white matter loss could help to identify those at high risk and to intervene earlier in the pathogenic process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.